Гидравлический расчет тепловых сетей: понятие, определение, методика расчета с примерами, задачи и оформление


Немного о теории и задачах

Главной задачей гидравлического расчета тепловых сетей является выбор геометрических параметров трубы и типоразмеров элементов управления, чтобы обеспечить:

  • качественно-количественное распределения теплоносителя на отдельные отопительные приборы;
  • тепло-гидравлическую надежность и экономическую целесообразность замкнутой тепловой системы;
  • оптимизацию инвестиционных и эксплуатационных расходов теплоснабжающей организации.

Вам будет интересно:ОАО «Покровский рудник» (Тыгда, Магдагачинский район, Амурская область) – месторождение коренного золота, разрабатываемое открытым способом

Гидравлический расчет тепловых сетей создает предпосылки, чтобы приборы отопления и ГВС достигали требуемой мощности при заданном температурном перепаде. Например, при Т-графике 150-70 оС, он будет равен 80 оС. Это достигается с помощью создания в каждой точке нагрева требуемого водяного напора или давление теплоносителя.

Такое обязательное условие работы тепловой системы реализуется путем грамотной настройки сетевого оборудования в соответствии с проектными условиями, монтажом оборудования на основании результатов гидравлического расчета тепловых сетей.

Этапы гидравлики сети:

  • Предпусковой расчет.
  • Эксплуатационное регулирование.
  • Первоначальная гидравлика сети выполняется:

  • с помощью расчетов;
  • измерительным способом.

Вам будет интересно:Металлургический , СПб

В РФ метод расчета является преобладающим, в нем определяются все параметры элементов системы теплоснабжения в отдельно взятом расчетном районе (дом, квартал, город). Без этого сеть будет разрегулирована, а теплоноситель не будет подан на верхние этажи многоэтажных домов. Вот почему начало строительства любого объекта теплоснабжения, даже самого малого, начинается с гидравлического расчета тепловых сетей.

Составление схемы тепловых сетей

Перед расчетами гидравлики выполняют предварительную схему магистрали с указанием протяженности L в метрах и D инженерных водоводов в мм и расчетных объемов сетевой воды по проектным участкам схемы. Потери напора в системах теплоснабжения делятся на линейные, возникающие в связи с тернием носителя о стенки труб, и потерь на участках, вызванных местными конструкционными сопротивлениями, из-за наличия тройников, отводов, компенсаторов, поворотов и прочих устройств.

Пример расчета гидравлический расчет тепловых сетей:

  • Вначале выполняется укрупненный расчет, с целью определения максимальных показателей сети, способных полностью обеспечить жителей услугами отопления.
  • По завершению устанавливают качественные и количественные показатели магистральных и внутриквартальных сетей, в том числе итоговое давление и температуру носителя на вводных узлах потребителей тепла, с учетом тепловых потерь.
  • Выполняют проверочный гидравлический расчет теплосети отопления и ГВС.
  • Устанавливают фактические расходы на участках схемы и на вводах к жилым объектам, объем тепла, получаемого абонентами при температурном расчете теплоносителя в подающем водопроводе систем отопления и располагаемом напоре в выходном коллекторе, обоснование гидротеплового режимов, прогнозируемую температуру внутри жилых помещений.
  • Определяют необходимую температуру теплоснабжения на выходе.
  • Устанавливают предельный размер Т нагретой воды на выходе из котельной или другого теплового источника, полученного на базе гидравлического расчета теплосети. Она должна обеспечивать санитарные нормы внутри помещений.
  • Определение расхода теплоносителя и диаметров труб

    Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

    G = 860q/ ∆t, где:

    • G – расход теплоносителя, кг/ч;
    • q – тепловая мощность радиатора на участке, кВт;
    • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

    Для первого участка расчет теплоносителя выглядит так:

    860 х 2 / 20 = 86 кг/ч.

    Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

    GV = G /3600ρ, где:

    • GV – объемный расход воды, л/сек;
    • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

    Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: https://dwg.ru/dnl/11875

    В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

    Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

    Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

    Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

    Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

    860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

    65 / 3600 х 0,983 = 0.018 л/сек.

    Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

    Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

    Применения нормативного метода

    Вам будет интересно:Сталь Х12Ф1: характеристики и применение

    Гидравлику сетей выполняют на базе таблиц предельных часовых нагрузок тепла и схемы теплоснабжения города или района с указанием источников, расположения магистральных, внутриквартальных и внутридомовых инженерных систем, с обозначением границ балансовой принадлежности собственников сетей. Гидравлический расчет трубопроводов тепловых сетей каждого участка до вышеуказанной схемы производится отдельно.

    Данная методика расчета применяется не только для сетей отопления, но также для всех трубопроводов, транспортирующих жидкие среды, в том числе газоконденсата и других химических жидких сред. Для трубопроводных систем теплоснабжения должны быть внесены изменения с учетом кинематической вязкости и плотности носителей. Это связано с тем, что эти характеристики оказывают влияние на показатель удельной потери напора в трубах, а скорость потока связана с плотностью транзитной среды.

    Параметры гидравлического расчета водяной тепловой сети

    Расход тепла Q и количество теплоносителя G для участков указывается в таблице максимальных показателей часового потребления тепла за зимний и летний сезоны в отдельности и соответствует сумме потребления тепла для кварталов, включенных в схему.

    Пример оформления гидравлического расчета тепловой сети представлен ниже.

    Поскольку расчеты зависят от многих показателей, они выполняются с использованием многочисленных таблиц, диаграмм, графиков, номограмм, итоговое значение расхода тепла Q для внутридомовых систем теплоснабжения получают путем интерполяции.

    Количество жидкости, циркулирующей в отопительной сети м3/час, при расчете гидравлического режима тепловой сети определяют по формуле:

    G = (D2 / 4) х V,

    Где:

    • G — расход носителя, м3/час;
    • D – диаметр трубопровода, мм;
    • V — скорость потока, м/с.

    Линейные падения напора при гидравлическом расчете тепловых сетей берутся из специальных таблиц. При монтаже систем отопления в них устанавливаются десятки и сотни вспомогательных элементов: клапаны, арматура, воздушники, отводы и прочие, создающие сопротивления транзитной среде.

    К причинам падения давления в трубопроводах также можно отнести внутреннее состояние материалов труб и наличие солевых отложений на них. Значения коэффициента, используемые в технических расчетах, приводятся в таблицах.

    Последовательность шагов расчета

    Говоря о расчете системы отопления, отмечаем что эта процедура является наиболее неоднозначной и важной в части проектирования.

    Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:

    • установить тепловой баланс во всех и конкретно каждой комнаты квартиры;
    • одобрать терморегуляторы, клапаны и регуляторы давления;
    • выбрать радиаторы, теплообменные поверхности, теплоотдающие панели;
    • определить участки системы с максимальным и минимальным расходом носителя тепла.

    Кроме того, надо определить общую схему транспортировки теплоносителя: полный и малый контур, однотрубная система или двухтрубная магистраль.

    В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:

    • какая должна быть мощность источника отопления;
    • какой расход и скорость теплоносителя;
    • какой нужен диаметр основной магистрали теплового трубопровода;
    • какие возможные потери теплоты и самой массы теплоносителя.

    Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.


    Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы

    Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.

    Стандартная методика и стадии процесса

    Согласно методике гидравлического расчета тепловых сетей, его осуществляют в две стадии:

  • Построение схемы теплосетей, на которой нумеруются участки, вначале в области центральной магистрали — более длинной и объемной по нагрузке линии сети от места подсоединения до более удаленного объекта потребления.
  • Расчет потерь напора каждого участка трубы, схемы. Его осуществляют с использованием таблиц и номограмм, которые обозначены требованиями государственных норм и стандартов.
  • Первым осуществляют вычисления для основной магистрали по расходам, установленным по схеме. При этом пользуются справочными данными удельных потерь напора в сетях.

    Далее, вычислив диаметры труб, рассчитывают:

  • Численность компенсаторов по схеме.
  • Сопротивления на фактически установленных элементах теплосети.
  • Потери напора высчитывают по формулам и номограммам. Затем, имея эти данные по всей сети, рассчитывают гидромеханический режим отдельных участков от места дробления потока вплоть до конечного абонента.

    Расчеты увязывают с выбором диаметров труб ответвлений. Нестыковка не более 10 %. Лишний напор в теплосети погашается на элеваторных узлах, дроссельными соплами или авторегуляторами во внутридомовых исполнительных пунктах.

    Вам будет интересно:Винт самолета: название, классификация и характеристика

    При имеющемся располагаемом давлении магистральной теплосети и ответвлений, вначале устанавливают приблизительные удельные сопротивления Rm, Па/м.

    В расчетах используют таблицы, номограммы для гидравлического расчета трубопроводов тепловых сетей и другую справочную литературу, обязательную для всех этапов, ее легко найти в интернете и специальной литературе.

    Транспортировка горячей воды

    Алгоритм схемы расчета установлен нормативно-технической документацией, государственными и санитарными нормами и выполняется в строгом соответствии с установленным порядком.

    В статье приведен пример расчета гидравлического расчета теплосети. Процедуру выполняют в следующей последовательности:

  • На утвержденной схеме теплоснабжения города и района отмечаются узловые точки расчета, источник тепла, трассировку инженерных систем с указанием всех ответвлений, подключенных объектов потребителей.
  • Уточняют границы балансовой принадлежности сетей потребителя.
  • Присваивают номера участку по схеме, начиная нумерацию от источника к конечному потребителю.
  • Система нумерации должна четко подразделять виды сетей: магистральные внутриквартальные, междомовые от теплового колодца и до границ балансовой принадлежности, при этом участок устанавливается как отрезок сети, заключенный двумя ответвлениями.

    На схеме указывают все параметры гидравлического расчета магистральной тепловой сети от ЦТП:

    • Q — ГДж/час;
    • G м3/час;
    • Д – мм;
    • V — м/с;
    • L — длина участка, м.

    Расчет диаметра устанавливается по формуле.

    Паровые сети отопления

    Эта тепловая сеть предназначена для системы теплоснабжения с помощью теплоносителя в виде пара.

    Отличия этой схемы от предыдущей вызваны температурными показателями и давлением среды. Конструктивно эти сети отличаются более короткой протяженностью, в крупных городах к ним обычно относятся только магистральные, т. е. от источника до центрального теплового пункта. Они не применяются в качестве внутрирайонных и внутридомовых сетей, разве что на небольших промышленных площадках.

    Принципиальная схема выполняется в той же очередности, что и с водяным теплоносителем. На участках указываются все параметры сети для каждого ответвления, данные берутся из сводной таблицы предельных часовых расходов тепла, с поэтапным суммированием расходных показателей от конечного потребителя к источнику.

    Геометрические размеры трубопроводов устанавливаются по результатам гидравлического расчета, который выполняется в соответствии с государственными нормами и правилами, а в частности СНиП. Определяющей величиной является потеря давления газоконденсатной среды от источника теплоснабжения к потребителю. При большей потере давления и меньшем расстоянии между ними скорость движения будут большой, а диаметр паропровода потребуется меньший. Выбор диаметра осуществляют по специальным таблицам, исходя из параметров теплоносителя. После чего данные вносят в сводные таблицы.

    Определение сопротивления

    Зачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.

    Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.

    Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.

    Самым утомительным и требующим больших затрат труда будет вычисление местного сопротивления в соединительных частях трубопровода, регулирующих клапанах, задвижках и отопительных приборах.

    Теплоноситель для конденсатной сети

    Расчет для такой тепловой сети значительно отличается от предыдущих, поскольку конденсат одновременно пребывает в двух состояниях — в паре и в воде. Это соотношение меняется по мере продвижения к потребителю, т. е пар становится все более влажным и в конечном итоге полностью превращается в жидкость. Поэтому расчеты для труб каждой их этих сред имеют отличия и учитываются уже другими нормами, в частности СНиП 2.04.02-84.

    Порядок расчета конденсатопроводов:

  • По таблицам устанавливают внутреннюю эквивалентную шероховатость труб.
  • Показатели потери давления в трубах на участке сети, от выхода теплоносителя с насосов теплоснабжения до потребителя, принимаются по СНиП 2.04.02-84.
  • В расчете этих сетей не учитывается расход тепла Q, а только расход пара.
  • Конструкционные особенности данного вида сети существенно влияют на качество измерений, поскольку трубопроводы для этого типа теплоносителя изготавливаются из черной стали, участки сети после сетевых насосов из-за подсосов воздуха быстро коррозируют от избытка кислорода, после чего образуется конденсат низкого качества с окисями железа, который вызывает коррозию металла. Поэтому на этом участке рекомендовано к установке трубопроводов из нержавеющих сталей. Хотя окончательный выбор будет сделан после завершения технико-экономического обоснования тепловой сети.

    Гидравлическая увязка

    Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.


    Гидравлическая увязка системы производится на основании:

    • проектной нагрузки (массового расхода теплоносителя);
    • данных производителей труб по динамическому сопротивлению;
    • количества местных сопротивлений на рассматриваемом участке;
    • технических характеристик арматуры.

    Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

    Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

    S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

    Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

    Программы проектирования

    Потери энергии из-за клапанов, фитингов и изгибов вызываются локализованными нарушениями потока. Потеря энергии происходит по конечному и не обязательно короткому участку трубопровода, однако для гидравлических расчетов принято считать, что весь объем этой потери учитывается в месте расположения устройства. Для трубопроводных систем с относительно длинными трубами часто бывает, что итоговые потери будут незначительными по отношению к общей потере давления в трубе.

    Потери трубопроводов измеряются с использованием реальных экспериментальных данных и затем анализируются для определения локального коэффициента потерь, который может быть использован для расчета потерь при подгонке, поскольку он изменяется скоростью прохождения жидкости через это устройство.

    Программные продукты Pipe Flow Software позволяют легко определять фитинговые потери и другие потери при расчете перепада давления, поскольку они поставляются с предварительно загруженной базой данных арматуры, которая содержит множество стандартных факторов для клапанов и фитингов различного размера. Внутри трубопроводной системы часто используется насос, который добавляет дополнительное давление для преодоления потерь при трении и других сопротивлениях.

    Производительность насоса определяется по кривой. Напор, создаваемый насосом, изменяется в зависимости от скорости потока, поиск рабочей точки на кривой производительности насоса не всегда является легкой задачей.

    Если использовать программу для гидравлического расчета тепловых сетей Pipe Flow Expert, то довольно просто можно найти точную рабочую точку на кривой насоса, с гарантией того, что потоки и давление будут сбалансированы по всей системе, чтобы принять точное решение по выбору конструкции трубопроводов.

    Расчет онлайн производится с целью избрания оптимального диаметра, обеспечивающего наилучшие параметры работы, низкие показатели потерь напора и высокие скорости движения сред, что обеспечит хорошие технико-экономические показатели тепловых сетей в целом.

    Он минимизирует усилия и обеспечивает более высокую точность. В него включены все необходимые справочные таблицы и номограммы. Так, потери на одном метре труб приняты в размере 81 — 251 Па/м (8,1- 25,1 мм вод. ст.), что зависит от материала труб. Скорость воды в системе зависит от диаметра установленных труб и выбирается в конкретном диапазоне. Наибольшая скорость воды для тепловых сетей составляет 1,5 м/с. Расчетом предлагаются граничные значения скорости воды в трубопроводах с внутренним диаметром:

  • 15,0 мм – 0,3 м/с;
  • 20,0 мм – 0,65 м/с;
  • 25,0 мм – 0,8 м/с;
  • 32,0 мм – 1,0 м/с.
  • Для остальных диаметров не более 1,5 м/с.
  • Для трубопроводов противопожарных систем разрешена скорость среды до 5,0 м/с.
  • Металлические отопительные трубы

    Эти изделия зарекомендовали себя на строительном рынке уже довольно давно, поскольку они обладают целым рядом весьма очевидных достоинств:

    • любые, даже самые значительные перепады давления в системе не станут помехой для нормального функционирования этих труб;
    • ввиду того, что металл нагревается долго и вместе с тем долго отдает тепло, такие конструкции могут выполнять функцию дополнительного отопительного прибора наподобие радиатора;
    • срок службы металлических труб является очень большим;
    • приемлемая стоимость таких изделий выгодно отличает их от прочих современных систем трубопровода.

    Однако имеются у них и некоторые отрицательные стороны, о которых нельзя не упомянуть:

    • обустройство трубопровода из металла является достаточно непростым. Для этой работы требуется наличие большого набора специализированных строительных инструментов, которые не всегда есть в наличии у рядового пользователя. Кроме того, весь процесс монтажа требует больших физических и временных затрат;
    • масса металлических конструкций очень большая, поэтому для их удержания требуются очень крепкие стены дома, что можно обеспечить далеко не всегда (к примеру, если основу перегородок составляет гипсокартон);
    • чугун, который обычно является основным материалом в металлической трубе, склонен к образованию на нем коррозионного налета как изнутри, так и снаружи, при этом периодическая чистка, которой избежать не получится – процедура весьма проблематичная.

    Инструментальная геоинформационная система

    ГИС Zulu — геоинформационная программа гидравлического расчета тепловых сетей. Компания специализируется на исследованиях ГИС-приложений, которым необходима визуализация 3D-геоданных в векториальном и растровом варианте, топологическом изучении и их взаимосвязи со смысловыми базами данных. Zulu разрешает создавать разные планы и рабочие схемы, включая тепловые и паровые сети с помощью топологии, может выполнять работу с растрами и приобретать данные из разных баз, например BDE или ADO.

    Вам будет интересно:Промышленная установка обратного осмоса: правила, инструкция по установке, фильтры и принцип работы

    Вычисления проводят в тесной интеграции с геоинформационной системой, они исполнены в варианте расширенного модуля. Сеть элементарно и живо вносится в ГИС мышью либо по данным координатам. После чего незамедлительно создается расчетная схема. После устанавливаются параметры схем, и подтверждается начало процесса. Вычисления применяются для тупиковых и кольцевых теплосетей, включая сетевые насосные установки и дросселирующие приспособления, запитанных от одного либо многих источников. Расчет отопления имеет возможность выполняться с учетом утечек из распределительных сетей и тепловых потерь в трубах отопления.

    Для того чтобы установить специальную программу на ПК, скачивают в Интернете через торрент «Гидравлический расчет тепловых сетей 3.5.2».

    Структура этапов определения:

  • Определение коммутации.
  • Поверочный гидромеханический расчет теплосети.
  • Наладочный теплогидравлический расчет магистральных и внутриквартальных труб.
  • Конструкторский выбор оборудования теплосети.
  • Расчет пьезометрического графика.
  • Инструмент разработчика Microsoft Excel

    Microsoft Excel для гидравлического расчета в тепловых сетях — самый доступный для пользователей инструмент. Его всеобъемлющий табличный редактор может разрешить много вычислительных задач. Впрочем, при выполнении расчетов тепловых систем требуется выполнения специальных требований. К таковым можно перечислить:

    • нахождение предшествующего участка в направлении движения среды;
    • расчет диаметра трубы по данному условному показателю и обратное вычисление;
    • установление коэффициента поправки к размеру удельных потерь напора по данным и эквивалентной шероховатости материала трубы;
    • вычисление плотности среды по ее температуре.

    Конечно, применение Microsoft Excel для гидравлического расчета в тепловых сетях никак не дает возможность абсолютно упростить ход вычислений, который изначально создает сравнительно большие трудозатраты.

    ПО для гидромеханического расчета сетей или пакет ГРТС — компьютерное приложение, которое исполняет гидромеханические подсчеты многотрубных сетей, включая тупиковую конфигурацию. Платформа ГРТС содержит языковый функционал формул, позволяющий установить необходимые характеристики расчета и подобрать формулы для точности их определения. Вследствие применения этого функционала, расчетчик имеет возможность независимо найти технологию вычислений и установить требуемую сложность.

    Имеется две модификации приложения ГРТС: 1.0 и 1.1. По окончанию пользователь получит следующие результаты:

    • расчет, в котором тщательно расписана методология вычислений;
    • отчет в табличном виде;
    • передачу вычислительных баз данных в Microsoft Excel;
    • пьезометрический график;
    • график температуры теплоносителя.

    Приложение ГРТС 1.1 считается наиболее современной модификацией и поддерживает новейшие стандарты:

  • Расчет диаметров труб по данным напорам в концевых точках тепловой схемы.
  • Модернизирована справочная платформа. Команда «?» открывает справочную область приложения на экране монитора.
  • Мощность генератора тепла

    Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный — на данном этапе не имеет значения. Поскольку нам важна главная его характеристика — мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.

    Мощность самого котла определяется по ниже приведённой формуле:

    Wкотла = (Sпомещ*Wудел) / 10,

    где:

    • Sпомещ — сумма площадей всех комнат, которые требую отопления;
    • Wудел — удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).

    Что характерно, для разных климатических зон имеем следующие данные:

    • северные области — 1,5 — 2 кВт/м2;
    • центральная зона — 1 — 1,5 кВт/м2;
    • южные регионы — 0,6 — 1 кВт/м2.

    Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.


    На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)

    Сумма площади квартиры которую необходимо отапливать — равна общей площади квартиры и равна, то есть — 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой — 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]