Средний расход тепловой энергии на горячее водоснабжение потребителя определяют по формулам 20 и 21
(20)
(21)
где: Qгвз, Qгвл — средний расход тепла на непосредственно горячее водоснабжение потребителя без учета тепловых потерь, соответственно в зимний и летний период, Вт;
а — норма расхода воды на горячее водоснабжение, л/сут·чел, утвержденая местными органами власти или управления. При отсутствии утвержденных порм принимается по приложению в соответствии со СНиП 2.04.01-85;
m — количество единиц измерения, отнесенное к суткам (число жителей, учащихся в учебных заведениях, мест в больницах)
tхз, tхл — усредненная температура холодной (водопроводной) воды соответственно зимой и летом, оС. Принимают в отопительный период tхз=5оС, в летний период tхл=15оС;
с — удельная теплоемкость воды, в расчетах принимаем равной 4,187 кДж/(кг·оС)
0,28 — коэффициент перевода размерностей физических величин.
Примечание: количество жителей жилых домов находим исходя из расчета n+1человек на n-комнатную квартиру,для остальных зданий находим по приложению Б исходя из объема данного нам здания и полученных опытным путем результатов для зданий другого объема, но того же типа.
m — находим по формуле:
m=V/в (22)
где: m — количество единиц измерения, отнесенное к суткам;
V — объем здания по внешнему обмеру, м3;
в- полученный опытным путем полученный по приложению
Таблица 5.1 — средний расход тепла на горячее водоснабжение в летний период для различных типов зданий
Тип здания | а, л/сут·чел | m, ед. | Qсргвз,Вт | Qсргвл,Вт |
Жилое здание 9 этажей | 120 | 297 | 87047,73 | 69638,18 |
Жилое здание 5 этажей | 120 | 165 | 48359,85 | 38687,88 |
Жилое здание 12 этажей | 120 | 132 | 38687,88 | 30950,3 |
Административные здания | 7 | 132 | 2256,79 | 1805,43 |
Кинотеатры | 5 | 600 | 7327,25 | 5861,8 |
Театры | 5 | 750 | 9159,06 | 7327,25 |
Детские сады | 30 | 139 | 10184,87 | 8147,90 |
Школы | 8 | 100 | 1953,93 | 1813,28 |
Поликлиники | 6 | 972 | 14244,17 | 11395,33 |
Больницы | 180 | 224 | 98478,24 | 78782,59 |
Гостиницы | 200 | 225 | 109908,75 | 87927,00 |
Потребное количество теплоты на нужды горячего водоснабжения за определенный период, определяют по формуле:
(23)
где: nз, nл — количество часов работы системы горячего водоснабжения в сутки соответственно в зимний и летний периоды, ч.
zз, zл — продолжительность работы системы горячего водоснабжения
соответственно в зимний и летний периоды, сут.
Рассчитанные значения потребного количества теплоты на нужды горячего водоснабжения за определенный период приведены в таблице 5.2.
Таблица 5.2 — Рассчитанные значения потребного количества теплоты на нужды горячего водоснабжения для различных типов зданий
Тип здания | Qсргвз,Вт | nз,ч | zз, сут | Qсргвл,Вт | nл,ч | zл, сут | Qгв,гДж |
Жилое здание 9 этажей | 87047,73 | 24 | 250 | 69638,18 | 24 | 85 | 2391,65 |
Жилое здание 5 этажей | 48359,85 | 24 | 250 | 38687,88 | 24 | 85 | 1328,70 |
Жилое здание 12 этажей | 38687,88 | 24 | 250 | 30950,3 | 24 | 85 | 1062,96 |
Административные здания | 2256,79 | 12 | 250 | 1805,43 | 12 | 85 | 31,00 |
Кинотеатры | 7327,25 | 16 | 250 | 5861,8 | 16 | 85 | 134,21 |
Театры | 9159,06 | 5 | 250 | 7327,25 | 5 | 25 | 44,51 |
Детские сады | 10184,87 | 16 | 250 | 8147,90 | 16 | 85 | 186,55 |
Школы | 1953,93 | 12 | 250 | 1813,28 | 12 | 25 | 23,06 |
Поликлиники | 14244,17 | 12 | 250 | 11395,33 | 12 | 85 | 195,68 |
Больницы | 98478,24 | 24 | 250 | 78782,59 | 24 | 85 | 2705,71 |
Гостиницы | 109908,75 | 24 | 250 | 87927,00 | 24 | 85 | 3019,76 |
Примечание: количество суток горячего водоснабжения летом для жилых зданий, административных зданий, кинотеатров, детских садов, поликлиник, больниц и гостиниц определяются по формуле:
Zл=365-Zht-30
где: Zht — продолжительность отопительного сезона в сутках;
30 — количество суток отведенных на ремонт теплотрассы.
Для школ и театров количество суток горячего водоснабжения летом определяется по формуле:
Zл=365-Zht-30-60
где: Zht — продолжительность отопительного сезона в сутках;
30 — количество суток отведенных на ремонт теплотрассы.
60 — летние каникулы (гастроли).
Определение нагрузки на источник ГВС.
Таблица 5.3 — Рассчитанные значения тепловой нагрузки на источник горячего водоснабжения
Тип здания | Qгв,гДж | Количество зданий, шт | Qгвс полное, гДж |
Жилое здание 9 этажей | 1700 | 17 | 40658,11 |
Жилое здание 5 этажей | 944,45 | 14 | 18601,75 |
Жилое здание 12 этажей | 75,56 | 7 | 7440,7 |
Административные здания | 30,36 | 3 | 93,00861 |
Кинотеатры | 262,35 | 2 | 268,4235 |
Театры | 86,65 | 1 | 44,51303 |
Детские сады | 182,18 | 4 | 746,217 |
Школы | 60,86 | 5 | 115,3039 |
Поликлиники | 191,28 | 2 | 391,3614 |
Больницы | 2646,99 | 1 | 2705,709 |
Гостиницы | 2957,46 | 1 | 3019,765 |
(25)
Расчет тепловой нагрузки на ГВС
Наименование объекта: Салон красоты
Содержание:
- Исходные данные
- Расчет тепловой нагрузки на горячее водоснабжение
- Техническое заключение
- Список нормативно-технической и специальной литературы
- Полная информация по расчету тепловых нагрузок
Расчет тепловой нагрузки • Согласование в МОЭК
Узнать подробно
Общие принципы выполнения расчетов гкал
Расчет квт для отопления подразумевает выполнение специальных вычислений, порядок которых регламентирован особыми нормативными актами. Ответственность за них лежит на коммунальных организациях, которые способны помочь при выполнении данной работы и дать ответ касательно того, как рассчитать гкал на отопление и расшифровка гкал.
Безусловно, подобная проблема будет полностью исключена в случае наличия в жилом помещении счетчика на горячую воду, так как именно в этом приборе имеются уже заранее выставленные показания, отображающие полученное тепло. Умножив эти результаты на установленный тариф, модно получить конечный параметр расходуемого тепла.
Способы определения нагрузки
Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.
Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:
- Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
- При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
- Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.
Фото здания, сделанное с помощью тепловизора Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.
Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.
Схож
Министерство образования и науки, молодежи и спорта украины национальная металлургическая академия украиныГичёв Ю. А. Источники теплоснабжения промышленных предприятий. Часть І: Конспект лекций: Днепропетровск: нметАУ, 2011. – 52 с | Министерство образования и науки украины министерство промышленной политики украины национальная металлургическая академия Украины – Государственный институт подготовки и переподготовки кадров промышленности (гипопром) Под редакцией профессора Шестопалова Г.move to 0-16320291 |
Министерство образования и науки украины министерство промышленной политики украины учебно-научный комплекс «Национальная металлургическая академия Украины Государственный институт подготовки и переподготовки кадров промышленности (гипопром)» Под редакцией профессора Шестопалова Г.move to 0-3612123 | Министерство образования и науки, молодежи и спорта украины национальный университет физического воспитания и спорта УкраиныРабота выполнена в Национальном университете физического воспитания и спорта Украины, Министерство образования и науки, молодежи… |
Министерство образования и науки, молодежи и спорта УкраиныМинистерство образования и науки, молодежи и спорта Украины, Севастопольский национальный технический университет (Севнту) с 23 по… | Министерство образования и науки, МОЛОДЕЖИ И СПОРТА УКРАИНЫ министерство образования и науки, молодежи и спорта автономной республики крым рвуз «крымский гуманитарный университет» (г. Ялта) институт экономики и управления контрольная робота по дисциплине |
Министерство образования и науки украины министерство промышленной политики украины национальная металлургическая академия Украины – Государственный институт подготовки и переподготовки кадров промышленности (гипопром) Под редакцией профессора Шестопалова Г.Социология. Курс лекций // Шестопалов Г. Г., Амельченко А. Е., Куревина Т. В., Лагута Л. Н под ред проф Г. Г. Шестопалова. – Днепропетровск:… | Национальный университет физического воспитания и сПорта Украины Гридько Людмила АнатолиевнаРабота выполнена в Национальном университете физического воспитания и спорта Украины, Министерство образования и науки, молодежи… |
Н ациональный университет физического воспитания и спорта УкраиныРабота выполнена в Национальном университете физического воспитания и спорта Украины, Министерство образования и науки, молодежи… | Национальный университет физического воспитания и спорта украиныРабота выполнена в Национальном университете физического воспитания и спорта Украины, Министерство образования и науки, молодежи… |
Документи
Документи
Теплотехнический расчет индивидуального жилого дома
Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.
Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.
Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.
Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.
Исходные данные:
- Помещение с обмером по наружным габаритам 3000х3000;
- Окно размерами 1200х1000.
Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.
Результат:
- Qуд при т/изоляции 100 мм составляет 103 Вт/м?
- Qуд при т/изоляции 150 мм составляет 81 Вт/м?
- Qуд при т/изоляции 200 мм составляет 70 Вт/м?
Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.
Иные способы вычислений объема тепла
Рассчитать количества поступающего в отопительную систему тепла можно и другими способами.
Формула расчета за отопление в данном случае может несколько отличаться от вышеупомянутой и иметь два варианта:
- Q = ((V1 * (T1 — T2)) + (V1 — V2) * (T2 – T)) / 1000.
- Q = ((V2 * (T1 — T2)) + (V1 — V2) * (T1 – T)) / 1000.
Все значения переменных в этих формулах являются теми же, что и ранее.
Исходя из этого, можно с уверенностью сказать, что расчет киловатт отопления вполне можно выполнить своими собственными силами. Однако не стоит забывать о консультации со специальными организациями, ответственными за подачу тепла в жилища, поскольку их принципы и система расчетов могут быть абсолютно другими и состоять из совершенного иного комплекса мероприятий.
Решившись конструировать в частном доме систему так называемого «теплого пола», нужно быть готовым к тому, что процедура расчета объема тепла будет значительно сложнее, так как в данном случае следует учитывать не только особенности отопительного контура, но и предусмотреть параметры электрической сети, от которой и будет подогреваться пол. При этом и организации, отвечающие за контроль над такими монтажными работами, будут совершенно иными.
Многие хозяева зачастую сталкиваются с проблемой, связанной с переводом нужного количества килокалорий в киловатты, что обусловлено использованием многими вспомогательными пособиями измерительных единиц в международной системе, называемой «Си». Здесь требуется запомнить, что коэффициент, переводящий килокалории в киловатты, будет составлять 850, то есть, говоря более простым языком, 1 кВт – это 850 ккал. Такой порядок расчетов значительно проще, поскольку высчитать нужный объем гигакалорий не составит труда – приставка «гига» означает «миллион», следовательно, 1 гигакалория – 1 миллион калорий.
Для того чтобы избежать ошибок в вычислениях, важно помнить, что абсолютно все современные тепловые счетчики имеют некоторую погрешность, при этом зачастую в допустимых пределах. Расчет такой погрешности также можно выполнить самостоятельно, воспользовавшись следующей формулой: R = (V1 — V2) / (V1+V2) * 100, где R – погрешность общедомового счетчика на отопление
V1 и V2 – это уже упомянутые выше параметры расхода воды в системе, а 100 – коэффициент, отвечающий за перевод полученного значения в проценты. В соответствии с эксплуатационными нормами максимально допустимая погрешность может составлять 2%, но обычно этот показатель в современных приборах не превышает 1%.
Усредненный расчет и точный
Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.
Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:
- q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
- q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
- q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
- q4 – уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
- q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
- q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
- q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).
По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.
Как рассчитать стоимость горячей воды
Согласно Постановлению № 1149 Правительства РФ (от 08 ноября 2012) расчет стоимости горячей воды производится по двухкомпонентному тарифу при закрытой и при открытой системах теплоснабжения:
- в открытых – с использованием компонентов на теплоноситель и на тепловую энергию (согласно ст. 9 п. 5 ФЗ № 190);
- в закрытых – с использованием компонентов на холодную воду и на тепловую энергию (согласно ст. 32 п. 9 ФЗ № 416).
Поменялся и формат счетов с разделением услуги на две строки: расход ГВС (в тоннах) и тепловой энергии – Q. До этого тариф ГВС (горячее водоснабжение) рассчитывался за 1 м3, уже включая в себя стоимость этого объёма холодной воды и тепловой энергии, потраченной на её обогрев.
Зависимость порядка расчёта
В зависимости от цены компонентов, определяется расчетная стоимость 1 м3 горячего водоснабжения. Для подсчёта используются нормативы потребления, действующие на территории муниципального образования.
Порядок расчета стоимости горячей воды по счетчику зависит от:
- типа системы теплоснабжения дома,
- наличия (отсутствия) общедомового прибора, его технических характеристик, определяющих, может ли он распределять Q на нужды водоснабжения и отопления,
- наличия (отсутствия) индивидуальных приборов,
- поставщиков тепловой энергии и теплоносителя.
Разделение на цену за кубометр ХВС и расходы на подогрев, помимо прочего должны стимулировать управляющие компании, обслуживающие жилфонд, бороться с прямыми теплопотерями – утеплять стояки. Для собственников двухкомпонентная тарификация означает, что плата за 1 м3 горячего водоснабжения может варьироваться относительно нормативного в случае превышения расхода Q по факту.
Многоквартирные дома без домовых расходомеров
Количество Q для подогрева 1 м3 горячей воды определяется по рекомендациям Госкомитета по тарифам, согласно которым объём тепловой энергии рассчитывается по формуле: Q = c * p * (t1– t2) * (1 + K).
В этой формуле по потребляемым кубометрам учитывается коэффициент теплопотерь на трубопроводах централизованного ГВС.
- С – теплоемкость воды (удельное значение): 1×10-6 Гкал/кг. x 1ºC;
- Р – вес воды (объемный); 983,18 кгс/м3 при t 60° C;
- t1 – это среднегодовая температура ГВС из централизованных систем, принимаемая за 60°C (показатель не зависит от системы теплоснабжения);
- t2 – это среднегодовая температура ХВС из централизованных систем, принимаемая по фактическим данным тех предприятий, которые поставляют холодную воду приготовляющим горячую воду организациям (например, 6,5°C).
Исходя из этого, в нижеследующем примере объём тепловой энергии составит:
Q=1*10-6 Гкал/кг * 1ºC * 983,18 кгс/м3 * 53,5°C * (0.35 + 1) = 0,07 Гкал/м³
Её стоимость для 1 м3:
1150 руб./Гкал (тариф ГВС) * 0,07 Гкал/м³ = 81,66 руб./м³
Тариф на ГВС:
16,89 руб./м³ (компонент ХВС) + 81,66 руб./м³ = 98,55 руб./м³
Пример № 2 расчёта без учёта коэффициента теплопотерь на централизованных трубопроводах для одного человека (без индивидуального водомера):
0,199 (Гкал – норматив потребления ГВС на человека) * 1540 (руб. – стоимость 1 Гкал) + 3,6 (м3 – норматив потребления ГВС на человека) * 24 (руб. – стоимость м3) = 392,86 руб.
Многоквартирные дома домовыми расходомерами
Фактическая оплата горячей воды в оборудованных общедомовыми счётчиками домах будет меняться ежемесячно, в зависимости от объёмных показателей тепловой энергии (1 м3), которые, в свою очередь, зависят от:
- качества работы прибора учёта,
- теплопотерь в сетях горячего водоснабжения,
- превышение подачи теплоносителя,
- степени настройки оптимального расхода Q и др.
При наличии индивидуального и общедомового приборов оплата ГВС рассчитывается по следующему алгоритму:
- Снимаются показания домового расходомера по двум показателям: А – количество тепловой энергии и В – количество воды.
- Высчитывается количество тепловой энергии, потраченной на 1 м3 теплоносителя, путём деления А на В = С.
- Снимаются показания квартирного водосчётчика в м3, которые умножаются на результат С, чтобы получить размер Q для квартиры (значение D).
- Значение D умножается на тариф.
- Добавляется компонент на нагрев теплоносителя.
Пример при потреблении 3 м3 по квартирному счётчику:
При этом если на результаты общедомовых показаний силами одной квартиры влиять сложно, то на показания индивидуальных водомеров можно повлиять легальными методами, например, с помощью установки экономителей воды: https://water-save.com/.
Читайте далее
Список нормативно-технической и специальной литературы
Расходы тепла подсчитаны согласно и с учетом требований следующих документов:
- Методических указаний по определению расходов топлива, электроэнергии и воды на выработку теплоты отопительными котельными коммунальных теплоэнергетических предприятий (ГУП Академия коммунального хозяйства им. К.Д. Памфилова, 2002 г.);
- СНиП 23-01-99* «Строительная климатология»;
- Расчет систем центрального отопления (Р.В. Щекин, В.А. Березовский, В.А. Потапов, 1975 г.);
- Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.);
- СП30.13330 СНиП 2.04.-85* «Внутренний водопровод и канализация зданий».
- «Технический регламент о безопасности зданий и сооружений».
- СНиП 23-02-2003 «Тепловая защита зданий»
- СНиП 23-01-99* «Строительная климатология»
- СП 23-101-2004 «Проектирование тепловой защиты зданий»
- ГОСТ Р 54853-2011. Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера
- ГОСТ 26602.1-99 «Блоки оконные и дверные. Методы определения сопротивления теплопередаче»
- ГОСТ 23166-99 «Блоки оконные. Общие технические условия»
- ГОСТ 30971-2002 «Швы монтажные узлов примыканий оконных блоков к стеновым проемам. Общие технические условия»
- Федеральный закон Российской Федерации от 23 ноября 2009 г. N 261-ФЗ “Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации”.
- Приказ Минэнерго России от 30.06.2014 N 400 “Об утверждении требований к проведению энергетического обследования и его результатам и правил направления копий энергетического паспорта, составленного по результатам обязательного энергетического обследования”.
Посмотреть другие отчеты по тепловым нагрузкам.
Расчёт счётчика тепла
Расчёт счётчика тепла заключается в выборе типоразмера расходомера. Многие ошибочно считают, что диаметр расходомера должен соответствовать диаметру трубы на которой он установлен.
Диаметр расходомера счётчика тепла должен выбираться исходя из его расходных характеристик.
- Qmin — минимальный расход, м³/ч
- Qt — переходной расход, м³/ч
- Qn — номинальный расход, м³/ч
- Qmax — максимально допустимый расход, м³/ч
0 – Qmin – погрешность не нормируется – допускается длительная работа.
Qmin — Qt – погрешность не более 5% — допускается длительная работа.
Qt – Qn (Qmin — Qn для расходомеров второго класса для которых значение Qt не указано) – погрешность не более 3% — допускается длительная работа.
Qn — Qmax – погрешность не более 3% — допускается работа не более 1 часа в сутки.
Рекомендуется подбирать расходомеры счётчиков тепла таким образом, чтобы расчётный расход попадал в диапазон от Qt до Qn, а для расходомеров второго класса для которых не указано значение Qt в диапазон расходов от Qmin до Qn.
При этом следует учесть возможность уменьшения расхода теплоносителя через счётчик тепла, связанную с работой регулирующей арматуры и возможность увеличения расхода через теплосчётчик, связанную с нестабильностью температурного и гидравлического режима тепловой сети. Нормативными документами рекомендуется подбирать счётчик тепла с ближайшим в большую сторону значением номинального расхода Qn к расчётному расходу теплоносителя. Подобный подход к выбору счётчика тепла практически исключает возможность увеличения расхода теплоносителя выше расчётного значения, что довольно часто приходится делать в реальных условиях теплоснабжения.
Выше приведенный алгоритм выводит список счётчиков тепла которые с заявленной точностью смогут учесть расход в полтора раза превышающий расчётный и в три раза меньший от расчётного расхода. Счётчик тепла выбранный таким образом позволит при необходимости в полтора раза увеличить расход на объекте и в три раза уменьшить его.
Простые вычисления по площади
Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным. К тому же он не учитывает таких особенностей, как:
- число окон и тип стеклопакетов на них;
- количество в комнате наружных стен;
- толщина стен здания и из какого материала они состоят;
- тип и толщина использованного утеплителя;
- диапазон температур в данной климатической зоне.
Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:
18 кв.м х 100 Вт = 1800 Вт
То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:
1800 Вт / 170 Вт = 10,59
Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.
Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.
Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:
25 кв.м / 1,8 кв.м = 13,89
Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).
Термины, применяемые в расчётах
Удельная отопительная характеристика здания — показатель максимального теплового потока, который нужен для обогрева конкретного здания. При этом перепад между температурой внутри здания и снаружи определяют в 1 градус.
Можно сказать, что эта характеристика наглядно показывает энергоэффективность здания.
Существует различная нормативная документация, где указываются средние значения. Степень отклонения от них и даёт представление о том, насколько эффективна удельная отопительная характеристика сооружения. Принципы расчёта берутся по СНиП «Тепловая защита зданий».
Что означает класс энергоэффективности?
Цифры, полученные по удельной тепло характеристике, используются для того, чтобы определить энергоэффективность здания. По законодательству, начиная с 2011 года, все многоквартирные дома должны иметь класс энергоэффективности.
Для того, чтобы определить энергетическую эффективность, отталкиваются от следующих данных:
- Разница между расчётно-нормативными и фактическими показателями. Фактические иногда определяют способом тепловизионного обследования. В нормативных показателях отражаются расходы на отопление, вентиляцию и климатические параметры региона.
- Учитывают тип здания и стройматериалы, из которого оно возведено.
Класс энергоэффективности записывают в энергетический паспорт. У разных классов имеются свои показатели расхода энергоресурсов в течение года.