Отопление частного дома солнечными батареями: схемы и устройство

Причины популярности альтернативных источников энергии вполне объяснимы: существует возможность сэкономить на топливе и воплотить в жизнь мечты об экологически чистых системах жизнеобеспечения. Умело используя энергию солнца, ветра и воды, можно обыкновенный дачный домик превратить в современный экодом.

Мы расскажем, как в частном доме оборудовать отопление на солнечных батареях, разберем вместе с вами, насколько это выгодно. Для того чтобы досконально осветить вопросы применения энергии дневного светила, мы подробно описали все популярные варианты, получившие практическое применение и положительные отзывы пользователей.

С учетом наших рекомендаций вы сможете соорудить эффективную гелиосистему для дачи или загородного дома. Чтобы облегчить восприятие непростого материала, информацию мы дополнили наглядными схемами, иллюстрациями и видео-руководствами.

Солнечное отопление

Суть процесса сводится к поглощению тепловой энергии солнца и передаче его теплоносителю, который, в свою очередь, должен быть перемещен в отопительную систему дома и передать тепло воздуху в помещениях. Учитывая, насколько сильно нагревается оставленная в открытой посуде в полдень вода, ничего сверхъестественного процесс собой не представляет.

К сожалению, наибольшую эффективность такая система будет иметь в период максимальной активности светила, то есть, в период с мая-месяца по август, когда солнечный день имеет наибольшую продолжительность и выпадает наименьшее количество осадков. В зимне-осенний период, когда возникает надобность в отоплении, картина выглядит иначе.

Короткий солнечный день уже ограничивает срок использования гелиоустройства. В пасмурные дни применить ни коллектор, ни батарею не удастся. Поэтому использовать солнечное отопление в качестве основного не представляется возможным. Однако как альтернативный источник тепла зимой, и горячей воды летом, система вполне эффективна.

Советы по эксплуатации

  1. Эксплуатация системы солнечного отопления производится в соответствии с конструкцией коллекторов, их количеством и прочими особенностями.
  2. Основной задачей для владельца становится поддержание чистоты, своевременное удаление пыли и прочих загрязнений. Это позволяет обеспечить максимальный прием тепловой энергии, повысить эффективность всей системы в целом.
  3. Необходимо качественно утеплить все соединительные трубопроводы и накопительную емкость, исключая теплопотери.
  4. Рекомендуется всегда держать в запасе одну-две панели, чтобы в случае механического разрушения можно было оперативно произвести замену. Соблюдение этих несложных рекомендаций позволит повысить эффективность системы и обеспечить комфорт и уют в доме.

Преимущества и недостатки отопления на солнечных батареях

Солнечный обогреватель для дома любого типа обладают следующими достоинствами:

  • автономность системы – вы перестанете зависеть от коммунальных служб и их расценок;
  • несмотря на высокую цену оборудования, общая эксплуатационная стоимость будет уменьшаться с каждым годом;
  • бесшумность;
  • длительный срок службы;
  • экологическая безопасность выделяемой энергии;
  • эксплуатация в различных климатических условиях: ветер, дождь, снег;
  • способность накапливать полученную энергию.

Недостатки:

  • КПД использования резко снижается при сильном нагреве фотоэлементов, поэтому желательна установка дополнительных систем охлаждения.
  • Внешнюю поверхность панелей нужно регулярно очищать от загрязнений и пыли.
  • Наличие ядовитых веществ в составе фотоэлементов. Во время эксплуатации они никак не влияют на чистоту выделяемой энергии, но требуют безопасной утилизации.
  • После 25–30 лет активного использования производительность панелей падает минимум на 10 %.
  • Эффективность батарей напрямую зависит от погодных условий, поэтому они нуждаются в оснащении дополнительными системами сохранения энергии.

Применение и надежность солнечных панелей

Система выработки электричества за счет солнечной энергии используется во всем мире уже лет 30-40, если не больше. За это время панели и фотоэлементы были серьезно усовершенствованы, оборудование протестировано в разных климатических условиях на всех 5 континентах.

Учитывая моду в XXI веке на все натуральное и экологически чистое, есть все основания полагать, что в ближайшие 15-30 лет большая часть населения во всем мире перейдет на отопление за счет солнечных панелей и фотоэлектрических систем, благодаря которым будет больше не нужно строить дорогостоящие большие электростанции и подстанции, а также тратиться на дорогое и неэкологичное топливо из нефти и газа. Со временем, по мере снижения стоимости фотоэлементов и усовершенствования технологий откроется больше возможностей для применения данных устройств.

Солнечная энергия, на самом деле, уже активно применяется человечеством (и не только в разрекламированных электромобилях). К простейшим системам, в которых уже используются фотоэлементы, относятся:

  • Фотоэлектрические насосные установки, ставшие прекрасной альтернативой ручным насосам и дизель-генераторам;
  • Системы с аккумуляторами, позволяющие батарее заряжаться и накапливать энергию, чтобы отдать ее при необходимости в любое время;
  • Системы с генератором позволят получать электричество в тех случаях, когда его необходимо больше, чем может дать фотоэлектрическая батарея. Такое комбинированное применение генератора и фотоэлементов позволит значительно снизить первоначальную стоимость системы;
  • Фотоэлектрические системы, интегрированные в электросеть. Таким образом, часть электроэнергии можно брать от фотоэлементов, а при нехватке – из общей коммунальной электросети, при этом аккумулятор не используется или просто заряжается;
  • Промышленные фотоэлектрические системы, которые работают совершенно бесшумно, не нуждаются в ископаемом топливе и не загрязняют окружающую среду.

Принцип работы

Принцип работы солнечных батарей заключается в образовании электрической энергии, они никак не накапливают и не образуют её. При прямом попадании лучей солнца на их поверхность они сразу же преобразовываются в ток и выводятся из панели.

Каждая пластина может вырабатывать по 250 Вт, поэтому для улучшения принципа работы их стараются устанавливать ближе друг к другу. Ток, полученный в результате фотосинтеза, через распределитель попадает в аккумуляторы, а потом уже в инвертер электросети дома.

Следует учесть, что объём аккумуляторов солнечных батарей влияет на продолжительность дневной работы батарей. Подзарядка аккумуляторов происходит в течение дня, пока используется энергии образованная на прошлом дне.

Принцип работы прост, и в то же время эффективен благодаря «полупроводнику». Полупроводник содержит атомы которые могут благодаря внешнему электрону захватывать или же отражать другие электроны. Вследствие этого поверхность солнечных батарей покрывается этим материалом. Этим «полупроводником» являются Селен и Кремний.

Пиковая нагрузка и среднесуточное энергопотребление

Удовольствие иметь собственную гелиостанцию стоит пока немало. Первая ступень на пути к обладания могуществом энергии солнца – определение оптимальной пиковой нагрузки в киловаттах и рационального среднесуточного энергопотребления в киловатт-часах домашнего или дачного хозяйства.

Пиковая нагрузка создается необходимостью включения сразу нескольких электрических приборов и определяется их максимальной суммарной мощностью с учетом завышенных пусковых характеристик некоторых из них.

Подсчет максимума потребляемой мощности позволяет выявить, жизненно нужна одновременная работа каких электроприборов, а которых не очень. Такому показателю подчиняются мощностные характеристики узлов электростанции, то есть итоговая стоимость устройства.

Суточное энергопотребление электроприбора измеряется произведением его индивидуальной мощности на время, что он проработал от сети (потреблял электроэнергию) в течение суток. Общее среднесуточное энергопотребление рассчитывается как сумма израсходованной энергии электричества каждым потребителем за суточный период.

Последующий анализ и оптимизация полученных данных о нагрузках и энергопотреблении обеспечат нужную комплектацию и последующую работу солнечной энергосистемы с минимальными затратами

Результат потребления энергии помогает рационально подойти к расходу солнечного электричества. Итог вычислений важен для дальнейшего расчета емкости аккумуляторов. От этого параметра цена аккумуляторного блока, немало стоящего компонента системы, зависит еще больше.

Почему на крышах наших домов не видно гелиоустановок

Интернет пестрит рекламными материалами с красивыми картинками, повествующими о необычайной выгоде гелиосистем. Народные умельцы выкладывают в youtube ролики на тему «отопление от солнца своими руками» о собственных ноу-хау, собранных на коленке из подручных материалов. Сеть пухнет от перепостов восторженных статей, рассказывающих о чудесных преимуществах солнечного отопления. Однако, много ли домов с солнечными коллекторами на крыше появилось за последние годы поблизости от вашего дома? Ни одного? В чём же причины того, что отопление солнечной энергией в наших краях не находит признания?

К сожалению, солнечная энергия для отопления домапоступает не тогда и не туда, когда и куда нужно. Холодно бывает ближе к полюсам, зимой и по ночам. А максимум солнечного излучения приходится на экваториальные районы, на лето и день. Теплоаккумуляторы худо-бедно помогают сгладить суточные, но не сезонные перепады.

Карта интенсивности распределения солнечного света по территории России. В Западной части страны, где живёт львиная доля населения, солнца мало. А в восточной Сибири, где доля излучения заметно выше, холодно, что затрудняет использование активных систем. Кстати, солнечные панели, вырабатывающие электричество, не столь чувствительны к сильным морозам. В холодной, но солнечной Якутии уже построены и успешно функционируют довольно мощные гелиоэлектростанции.

Пассивное отопление солнечной энергией малоэффективно и не способно сколь-нибудь серьёзно обогреть дом в условиях русской зимы. «Окна — на юг» — реально полезный метод проектирования, ничего не стоящий, но помогающий оптимизировать расходы на отопление. А вот некогда относительно популярные в США гелиотеплицы, стены Тромба и их производные постепенно сошли на нет даже у себя на родине.

Активные солнечные системы отопления частного дома обходятся весьма недёшево, немало денег придётся отдать за оборудование. Эксплуатация, вопреки некоторым утверждениям, отнюдь не бесплатна: расходуется электроэнергия, требуется обслуживание техники. При нынешних ценах, по сравнению не только с дешёвым природным газом, но даже с довольно дорогими пеллетами, дизтопливом, установка вакуумного солнечного коллектора на подавляющей части территории РФ не окупится вообще никогда, срок окупаемости превышает срок службы оборудования. Лишь в некоторых южных регионах страны солнечные системы отопления частного дома могут быть не убыточны при определённых условиях.

Научная станция на острове Ольхон (Россия). Применение вакуумных коллекторов (справа на крыше) для приготовления горячей воды и гелиопанелей (слева) для выработки электроэнергии имеет смысл, ведь центральных коммуникаций на этом скалистом байкальском острове нет. Однако для полноценного отопления в климате Бурятии солнечных систем недостаточно, греют дом «нормальные» печи, топливо для которых завозят с «большой земли», ведь изводить местный лес на дрова нельзя

Что такое

Гелиоустановка — это современный экологичный способ получения и последующего применения тепловой энергии от солнца. Во многих странах установки уже давно используют в частном секторе и промышленных масштабах. Системы подходят для нагрева воды или отопления. Преимущества для владельца:

  • Владелец установки бесплатно получает солнечную энергию, которую может потом распределить по дому.
  • Процесс получения и преобразования энергии экологичен и не наносит вреда планете.
  • Энергия солнце неиссякаема, поэтому владелец установки всегда может быть уверен в ее получении.
  • По сравнению с другими установками альтернативного получения энергии, стоимость коллектора невысокая.

Как и у любой установки, у солнечного коллектора есть и свои минусы — результат работы зависит от погоды.

В нашей стране использование гелиосистем не так распространено, как в Европе и Америке, по причине низкой эффективности, связанной с погодными условиями. Лидеры по установке гелиоколлекторов сегодня Япония и Китай.

Из чего состоит и как работает солнечный коллектор

Каждый солнечный коллектор включает в себя следующие элементы:

  • коллектор для сбора энергии;
  • насосы для циркуляции;
  • трубопровод, где происходит циркуляция теплоносителя;
  • система управления за установкой;
  • теплоноситель;
  • бойлер.

Гелиоустановка совместима с водонагревателями и газовыми котлами. Дополнительно монтируют теплосчетчик, который помогает вычислить выработанную энергию и подсчитать реальную экономию киловатт.

1.Солнечный коллектор. 2. Буферный бак. 3. Горячая вода. 4. Холодная вода. 5. Котроллер. 6. Теплообменник. 7. Помпа. 8. Горячий поток. 9. Холодный поток.

Выбор системы и ее установка

Первое, что требуется при выборе определенной системы — тщательно изучить ее возможности. Обязательно требуется рассчитать площадь жилища, а также то количество тепла, которое требуется для его отопления. Место установки – это еще один значимый момент. Отзывы говорят в пользу того, что правильнее всего будет воспользоваться помощью квалифицированных специалистов в данной области. Связано это с тем, что даже при незначительном просчете можно сильно снизить эффективность готового решения во время работы. Если солнечная батарея для отопления дома будет установлена правильно, то прослужит она не менее 25 лет. Всего 3 года нужно для ее полной окупаемости. Такой срок многие не считают слишком долгим, судя по тем же отзывам пользователей

Это позволяет стать полностью независимым от коммунальных служб, а это очень важно

Солнечная батарея для отопления дома должна устанавливаться так, чтобы солнечное освещение в этом месте было максимальным. Если выбранное здание не пригодно для монтажа такой системы, то можно воспользоваться соседним строением. Накопитель вполне можно разместить в подвальном помещении. встречаются и такие системы, где используется несколько накопителей. В этом случае их размеры будут немного скромнее. Те, кто решил для себя выбрать отопление частного дома солнечными батареями, может смело говорить о правильности своего решения. Солнечная энергия – это неиссякаемый источник тепла, при этом абсолютно бесплатный. Для этого требуется только вложить определенную сумму в оборудование и монтаж системы, а потом она себя не только полностью окупит, но еще и избавит от необходимости платить деньги коммунальным службам.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют

Обращайте внимание на свое тело. Если вы замети

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Классическая схема душа с бочкой и гелиоколлектором с пластиковым змеевиком

Все методы рассматриваемых самоделок несложные: обобщенно, это утепленный корпус с трубками (металл, пластик), бочка на верху кабинки под прямыми солнечными лучами и магистраль циркуляции. Все остальные способы — модификации описанной конструкции. Под ультрафиолетом пластик утрачивает прочность, трескается, поэтому металлический бак тоже хорошо подойдет. Впрочем, можно использовать любой материал, даже деревянную бочку, если она не будет рассыхаться.

Не обязательно также делать сложную конструкцию выхода воды, предусматривать возможность смешивания ее с холодной жидкостью. Можно обойтись и простым гибким перекрывающимся шлангом с душевой насадкой. Если бочка будет наполняться бытовым насосом, вручную ведрами из колодца, то также отпадает необходимость сооружать магистраль до питающего крана (наш пример с ним).

Особенности сборки:

  1. Каркас для кабинки: металлические профили, полосы (подойдут даже со свалки), трубы ПВХ, дерево, любой материал, из которого можно соорудить устойчивую конструкцию Можно обойтись без каркаса, если есть где закрепить бочку, но место должно быть открытым со всех сторон, подойдут, например, незатеняемые крыши пристроек, иных сооружений. В роли стенок можно применить драпировку тканью, непрозрачный полиэтилен.
  2. Бочка. Объем и материал выбирает пользователь по своему усмотрению, наш случай — 120 л, пластик.
  3. Подвод воды, обвязка: садовый шланг, пластиковые трубы (25 мм) с фитингами, быстросъемные соединения.
  4. Дренаж: траншея и яма.

Для кабинки использовались железные рамы от старых пружинных кроватей. Применялась сварка. На каркасе сделаны перемычки и сверху посадочное место под бочку.

Дренаж — яма на отдалении от душа с канавками, постепенно углубляющимися в сторону от него. Углубления заполнены крупной щебенкой, гравием строительным мусором.

Далее, сделаны ручным буром скважины под ножки каркаса, который установили в них и забетонировали (по ведру на каждую опору).

Порядок сооружения летнего душа с иллюстрациями

Подготовка элементов: бочка, трубы, душевая лейка, шланг, поплавковый клапан для подачи воды.

Подача будет осуществляться по выделенному каналу гибким шлангом (10 м ¾ дюйма). Также приобретено 5 м трубки потоньше ½ дюйма для раздела потоков — на кран душа и на заполнение.

Для начала необходимо сделать настил, чтобы не наступать на грязь во время принятия душа. Этот элемент обработан антисептической пропиткой, покрашен яхтным лаком.

Размечаем бочку, чтобы правильно поставить магистраль подачи/наполнения. С восточной стороны, слева от входа в душ — впуск воды (для наполнения от дворового крана). Там наметим место сверления отверстия под обычный поплавковый клапан от бачка унитаза. Сверлим шуруповертом со ступенчатым сверлом.

Клапан (поплавковый) вставляется, фиксируется гайкой. Устанавливаем кран отверстием вниз, так шланг не будет заламываться. Применяем паклю и герметизирующую смазку «Унипак».

Далее, применяем для подключения к шлангу быстросъмные соединения. А также в бочку можно вставить термометр.

Устанавливаем 2 штуцера. Сначала обозначаем уровень наполнения, выход холодной воды (внизу), вход горячей (вверху).

Врезаем на днище еще 2 штуцера — для душа и для слива на всякий случай. К первому присоединяем кран. В нашем случае он с тройником с вентилем для подмешивания холодной воды. Можно обойтись и более простой конструкцией — одним краном. На сливной патрубок ставим заглушку. На питающий шланг приделываем грузило.

Бочка сверху накрывается крышкой, там сверлят несколько небольших отверстий для «дыхания». Бак заполняется дворовым краном через гибкую подводку. Но также воду заливать можно ведрами, насосом через верх без отдельной подводки.

Бочка сама выступает своеобразным солнечным коллектором, термосом, нагреваясь на солнце.

Солнечный коллектор

Из обычных пластиковых труб (внешний диаметр 20 мм) и фитингов собирают решетку (змеевик). На верхних и нижних концах по диагонали приваривают заглушки. Сверху, снизу приваривается коллектор из тройников 25–20–25 мм.

Следующий этап — корпус: рама из бруса 50х50 мм с бортиками:

Делаем теплоизоляцию, чтобы пойманное солнечное тепло аккумулировалось внутри короба. Применяем экструдированный фольгированный пенополистирол 30 мм:

Разметка под держатели для труб и их установка:

Устанавливаем гелиоколлектор чуть ниже бочки, для конструкции соорудили металлический каркас, но также можно сделать попроще: из дерева или просто закрепив с опорой на подходящей поверхности.

Дальше — важные «мелочи»: на короб стекло, оргстекло или толстая пленка, прозрачный/полупрозрачный пластик, герметизация монтажной пеной. Последняя мера крайне желательная, так как даже небольшое отверстие может привести к критической потери тепла. Крышка прозрачная, чтобы воздействие лучей усиливалось: они попадают внутрь и еще раз нагревают трубы отражаясь от фольгированного покрытия. Вся магистраль утепляется пенофолом.

Такая система обеспечивает нагрев до +51° C. Циркуляция естественная: вода, нагреваясь внутри коллектора, периодически из него выплескивается в бочку, забирается с верхнего сегмента на душ, а холодный слой однвременно снизу вытесняется на змеевик.

Недостатки

Причина сравнительно слабого нагрева: теплопроводность полипропилена (из него сделан змеевик) очень низкая, сравнимая с керамзитом и древесиной, то есть он лучше подходит для изоляции, а не для теплообмена. Если использовать металл (особенно почерненную медь), в том числе и в роли внутренней оббивки короба, то температуру можно поднять вплоть до точки кипения при жарком климате.

Заменить полипропилен можно также гофрированными нержавеющими трубками как от шланга душа. В роли отражателей внутрь поставить дюралевые пластины.

Совет: не используйте пластиковый клапан с поплавком — он треснет, так как не рассчитан на теплую воду, поставьте латунную конструкцию.

Возможные вариации узлов

Бочку можно утеплить полиэтиленом и подобными материалами, если они будут черными, то эффективность улучшится.

Принцип смесителя: если есть линия подачи холодной воды, ее можно использовать как для наполнения бака, так и для разбавления горячего душа. То есть должно быть питание от дворового крана или еще один бак для холодной воды, обвязанный с «горячей» бочкой.

Выгодны ли солнечные батареи для частного дома

В западных странах мода на солнечную энергетику продиктована больше заботой об экологии, чем поиском экономической выгоды. У нас реалии несколько иные.

При сохранении нынешних цен на поставляемое электричество, система из солнечных батарей, собранная своими руками для одного частного дома и семьи из 4 х человек, полностью окупается за 4-5 лет. При этом срок службы фотоэлементов – составляет 20-25 лет, а вот аккумуляторы придется менять через 5-7 лет в зависимости от качества батарей.

Пока нигде в мире (и Россия не исключение) не наблюдается снижения цен на поставляемое электричество, поэтому за срок службы фотоэлементов в солнечной панели, система успеет окупиться как минимум 4-5 раз.

Виды устройства

Для преобразования солнечной энергии в тепловую, используются специальные технические устройства, называемые коллекторами. В зависимости от конструкции, их можно подразделить на два вида, это:

  1. Плоские коллекторы – в основе этой конструкции лежит плоский короб, закрытый с наружной стороны стеклом, в который помещены трубки, по которым циркулирует теплоноситель. Между трубками уложен утеплитель, а под стеклом прокладывается абсорбер, материал имеющий способность к накоплению тепловой энергии. К внешней сети коллектор подключается через патрубки, монтируемые на входе и выходе укладываемых трубок.
  2. Вакуумные коллекторы – в основе этой группы устройств, лежит использование вакуумных трубок, которые крепятся на специальном каркасе и верхней своей частью помещены в слой теплоносителя. Вакуумная трубка состоит из двух трубок, одна из которых медная, помещена в стеклянную, большего размера. Во внутреннее пространство стеклянной трубки помещен материал с высокой степенью абсорбции. Из стеклянной трубки откачан воздух, тем самым создан вакуум, что позволяет улучшить характеристики устройства по накоплению и передаче тепла.

Существует еще один тип солнечных коллекторов, это плоские воздушные устройства. В данной конструкции в качестве теплоносителя используется воздух, но в связи с низким КПД подобных моделей и неэффективностью, подобные коллекторы для отопления домов практически не используются.

Проект системы отопления на коллекторах

Прежде всего, мы подробно разберемся с различиями в строении и функционировании батарей и коллекторов.
Панель состоит из нескольких фотоэлементов, соединенных между собой на каркасе из непроводящих энергию материалов.

Фотоэлектрические преобразователи – достаточно сложные конструкции, представляющие собой своеобразный сэндвич из пластин с различными характеристиками и назначениями.

Кроме гелио модулей и специального крепежа, система состоит из таких элементов:

  • аккумуляторов, для хранения энергии;
  • контроллера, который будет следить за степенью зарядки в аккумуляторе;
  • инвертора – для преобразования постоянного тока в переменный.

Коллекторы бывают двух видов: вакуумные и плоские.

Вакуумные коллекторы состоят из полых стеклянных трубок, внутри которых расположены трубки меньшего диаметра, содержащие поглотитель энергии. Меньшие трубки соединены с теплоносителем. В свободном пространстве между ними находится вакуум, который сохраняет тепло.

Принцип работы солнечного коллектора

Плоские коллекторы состоят из рамы и армированного стекла с фотонопоглощающим слоем. Слой поглотителя подключен к трубкам с теплоносителем.

Обе эти системы состоят из контура для теплообмена и теплового аккумулятора (бак для жидкости).

Из бака вода поступает в отопительную систему при помощи насоса. Во избежание потерь тепла, бак должен быть хорошо утеплен.

Располагаться такие установки должны на южном скате кровли. Угол наклона должен быть 30–45 градусов. Если расположение дома или конструкция крыши не позволяют установить панели гелиосистемы на кровле, то можно установить их на специальных укрепленных каркасах или на стойках, закрепленных в стену.

Количество солнечной энергии, выделяемой в разное время года, сильно отличается. Величину коэффициента инсоляции для места вашего проживания можно найти по карте солнечной активности. Зная коэффициент инсоляции, вы сможете посчитать необходимое вам количество модулей.

Например, вы потребляете энергии 8 кВт/ч, инсоляция в среднем 2 кВт/ч. Мощность солнечной панели – 250 Вт (0,25 кВт). Произведем расчеты: 8 / 2 / 0,25 = 16 штук – именно такое количество панелей вам понадобится.

Пример расчета необходимой мощности

При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.

Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.

Компании производители рекомендуют исходить из таких цифр:

  • обеспечение горячего водоснабжения не более 70%;
  • обеспечение отопительной системы не более 30%.

Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.

Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией.

Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.

Пример расчета:

Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:

S = 1,6 * 0,058 = 0,0928м2

КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:

W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч

Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д.

С всеми видами альтернативных источников энергии и способами их использования вы сможете ознакомиться в представленной статье.

Активное отопление солнечный свет собирают вакуумные коллекторы

Воздушный солнечный коллектор

Воздушный солнечный коллектор, оснащённый системой принудительной передачи и распределения энергии, способен дать намного больше тепла по сравнению с пассивным вариантом. Скорость циркуляции воздуха автоматически регулируется в зависимости от температуры в доме и степени нагрева коллектора. Нагретый в коллекторах воздух может поступать в систему вентиляции или помещения напрямую. Если его температура достаточно высока, он может использоваться и для нагрева жидкого теплоносителя. Излишки дневной энергии запасают на ночь в теплоаккумуляторах.

Солнечное воздушное отопление на основе гелиоколлектора. Из пустотелой панели (1) по воздушным каналам (6) вентилятор гонит воздух в техническое помещение, где автоматика в зависимости от ситуации распределяет его в блок воздухоподготовки (3) либо массивный теплоаккумулятор (2). Параллельно может нагреваться и змеевик горячего водоснабжения (5). Днём, когда помещения нуждаются в нагреве, система работает в режиме В, тёплый воздух из коллектора направляется в комнаты. При достижении необходимой температуры в доме воздушный поток перенаправляется в теплоаккумулятор, режим А. Ночью, когда коллектор не даёт тепла, заслонка закрывает канал, ведущий к нему, циркуляция осуществляется между теплоаккумулятором и помещениями.

Вакуумный солнечный коллектор

Наиболее совершенное на сегодняшний день устройство для гелиоотопления.

Принципиальная схема вакуумного солнечного коллектора. Жидкий абсорбер, циркулирующий по U-образным трубкам, при нагревании испаряется и поднимается вверх, в коллектор. Последний подсоединён к контуру системы отопления и по нему, в свою очередь, циркулирует жидкий теплоноситель. Абсорбер отдаёт энергию теплоносителю, остывает, конденсируется, опускается вниз. Цикл повторяется

Солнечное отопление загородного дома на основе вакуумных коллекторов значительно эффективнее других гелиосистем, однако, помимо традиционной для гелиосистем неравномерности генерации тепла, у него имеется ещё три существенных недостатка: на сильном морозе теплоотдача резко падает, установки хрупки и дорого стоят.

Вакуумные солнечные коллекторы следует устанавливать таким образом, чтобы они были защищены от вандалов. Это особенно актуально для нашей страны, попасть камешком в стеклянную трубочку — милое дело

Вакуумные панели не подключают к системе отопления напрямую. Необходимы, как минимум, буферные ёмкости, которые будут сглаживать неравномерность выработки тепла.

«Правильная» схема подключения вакуумного гелиоколлектора к системе отопления. Тепло передаётся не напрямую, а через теплообменник, дневные излишки тепла на ночь запасаются в теплоаккумуляторе (буферном баке)

Обратите внимание, что на схеме изображён «нормальный» отопительный котёл, солярная система лишь дополняет его

Электрические солнечные панели можно использовать для отопления лишь косвенно. Расходовать электроэнергию на нагрев помещений напрямую неразумно, ей можно найти более рациональное применение. Например, направить на работу вентиляторов и автоматики активных гелиосистем.

Принцип обогрева и его эффективность

Абсорберы воздушных коллекторов делают черного цвета, для увеличения интенсивности нагрева под воздействием солнечного излучения. Температура воздуха в коллекторе достигает 70-80°С. Тепла с избытком хватает для полноценного обогрева помещений небольшой площади.

Принцип действия воздухонагревателя следующий:

  • воздух закачивается с улицы в корпус коллектора принудительным способом;
  • внутри блока установлены абсорберы, отражающие тепло, поднимающие температуру внутри ящика до 70-80°С;
  • происходит нагрев воздуха;
  • разогретые воздушные массы принудительно нагнетаются в отапливаемые помещения.

В заводских моделях обеспечение циркуляции воздуха осуществляется при помощи вентиляторов, подключенных к солнечным батареям. Как только ультрафиолетовое излучение становится достаточно интенсивным, чтобы выработать некоторое количество электроэнергии, турбины включаются. Коллекторы начинают работать на обогрев. Зимой интенсивность излучения Солнца снижается.

Дом не сможет полностью функционировать на солнечном воздушном отоплении. Воздухонагреватели используются как дополнительный источник тепла. При правильных расчетах одна установка (данные взяты из технических характеристик воздушных солнечных коллекторов Solar Fox) обеспечит следующую экономию, за отопительный сезон:

  • газ до 315 м³;
  • дрова до 3,9 м³.

Система солнечного воздушного обогрева компенсирует около 30% необходимого для здания тепла. Полная окупаемость достигается в течение 2-3 лет. Если учесть, что принцип работы связан с использованием установки и для кондиционирования воздуха, а в течение года вырабатывается около 4000 кВт, целесообразность использования становится еще очевиднее.

В странах ЕС широкое распространение получило конструкторское решение «солнечная стена». Конструкция заключается в следующем:

  • в здании одна из стен изготавливается из аккумулирующего материала;
  • перед панелью устанавливается стеклянная перегородка;
  • в течение дня тепло аккумулируется, после чего отдается в помещение ночью.

Для усиления конвекции, солнечный коллектор делается не во всю стену. Вверху и внизу предусматривают раздвижные шторки.

Особенности установки солнечного отопления

Солнечное отопление является наиболее эффективным в районах, характеризующихся большим количеством солнечных дней (особенно в зимний период времени).

Солнечное (гелиоотопление) отопление дома, выполненное своими руками, должно производиться с учетом специфических особенностей установки:

Схема работы солнечных батарей. Нажмите для увеличения.

Один из наиболее оптимальных вариантов — комбинированное отопление дома газовым (либо электрическим) методом и солнечной энергией.

Данный вариант, характеризующийся интеграцией элементов гелиосистемы в существующую схему теплоснабжения, позволяет значительно повысить эффективность нагрева и увеличить экономические показатели.

При производстве работ в районах, характеризующихся низким значением уровня инсоляции (потока прямых солнечных лучей на горизонтальную поверхность), необходимо особое внимание уделять оптимальному выбору площади коллекторов и правильности их монтажа. При определении уровня инсоляции следует помнить, что ее интенсивность выше в середине дня

В данной связи плоскости коллектора следует ориентировать в южном направлении. Возможны некоторые отклонения в юго-западном либо в юго-восточном направлениях

При определении уровня инсоляции следует помнить, что ее интенсивность выше в середине дня. В данной связи плоскости коллектора следует ориентировать в южном направлении. Возможны некоторые отклонения в юго-западном либо в юго-восточном направлениях.

При установке коллекторов необходимо следить за тем, чтобы на них не падала тень от соседних строений либо деревьев. Монтаж коллекторов под углом, равным географической широте данной местности, способен существенно повысить их эффективность.

Это связано с тем, что максимальный уровень поглощения энергии Солнца приходится на расположенные под прямым углом к направлению инсоляции поверхности коллекторов.

Именно поэтому необходимо произвести увеличение угла наклона, что позволит повысить эффективность работы коллектора в зимнее время, несколько увеличив потери тепла летом. Однако летом увеличение тепловых потерь вполне допустимо ввиду переизбытка тепловой энергии.

Преимущества

Основное преимущество состоит в том, что Солнце — постоянный и неиссякаемый источник, стабильный и полностью предсказуемый. В отличие от ветрогенераторов, которые могут простаивать неделями, солнечная энергия подается в заранее известные временные интервалы. Единственным недостатком является возможность пасмурной или холодной погоды, когда эффективность работы батарей и коллекторов падает. Однако, современные конструкции позволяют получать минимальное количество даже в самых сложных условиях, поэтому при правильном расчете никакие неожиданности системе обогрева не угрожают.

Кроме того, нельзя забывать, что солнечная энергия достается совершенно бесплатно. Если при отоплении дома газовыми или электрическими котлами надо приобретать само оборудование и потом постоянно оплачивать энергию или топливо, то солнечная энергия не оплачивается, что значительно изменяет уровень рентабельности аппаратуры и всей системы в целом.

Однако, не следует забывать, что солнечное отопление частного дома, цена и трудозатраты на монтаж которого нередко становятся основной проблемой, выгодно только в регионах с подходящими климатическими и погодными условиями.

Дополнительным преимуществом является высокая ремонтопригодность системы и возможность наращивания ее производительности. В данном вопросе никаких ограничений нет — сколько установлено панелей или коллекторов, столько энергии и будет получено. Если установленный комплект оказался неспособен к эффективному обогреву дома, его всегда можно усилить добавлением нужного количества оборудования. Это удобно при необходимости перестроить или расширить дом, сделать пристройку и т.д. Необходимости покупать новую систему полностью это не возникает.

Обогрев дома солнечными батареями коллекторного типа

По своей сути коллекторы действительно схожи с солнечными батареями, поскольку улавливают прямые солнечные лучи. Исключением для вторых являются тонкопленочные пластины, выдающие ток от рассеянного света. Что касается коллекторов, то для нагрева воды жаркое солнечное излучение нужно плоским моделям. Единственный вариант, активно поставляющий в трубы отопительной системы горячую воду всю зиму, даже при плотной облачности – вакуумные коллекторы

. Именно вакуум сберегает драгоценное тепло.

Если вы решите брать вакуумный вариант, в этом случае вам также предстоит выбор – модели прямого нагрева воды или косвенного. Первые считаются сезонными, поскольку накопительный бак расположен непосредственно в корпусе коллектора, и трубки с двойной оболочкой, внутри которой вакуумная среда, соединяются с емкостью напрямую. В зимнее время такие модели использоваться не могут, вода в них замерзает.

Другое дело – обогрев дома солнечными батареями коллекторного всесезонного типа. Они будут работать даже при -50 градусах и облачном покрове, поскольку накопительный бак установлен в доме. Такая система действует благодаря жидкости-теплоносителю, движущейся по трубам между спиралями, расположенными внутри бака, и коллектором. В сердечники вакуумных трубок залита та же жидкость. Вода же только в накопителе, из него она по трубам течет в батареи.

Разновидности

Солнечная энергия, используемая для отопления, может преобразовываться двумя видами оборудования:

  • батареи – производят электрический ток, который далее поступает на электрическое оборудование;
  • коллекторы – в них происходит нагревание теплоносителя (жидкости), который отдает свое тепло.

Солнечный коллектор для отопления может быть подключен к действующей системе подачи тепла. Еще таким приспособлением можно нагревать воду.

Эффективность отопления от солнечной энергии

Солнечные батареи применяются чаще всего как источник возобновляемой и бесплатной энергии. Поэтому в целях отопления дома эффективны они будут для электрических систем отопления, а также для нагрева воды. В комплект солнечных батарей входит:

  • обыкновенный преобразователь;
  • преобразователь переменного тока в постоянный;
  • датчик уровня заряда батареи;
  • система отбора мощности;
  • панели и аккумулятор.

Отопление для дома можно сделать на основе электрических обогревателей. при этом можно выбрать красивые настенные радиаторы с датчиками и регулировкой температуры. чтобы достичь наибольшей экономии. Также удобно использовать такую систему, как теплый пол. В этом случае нагрев будет равномерный, а распределяться в помещении будет путем движения потоков воздуха. По эффективности система не будет уступать радиатору или конвектору. А при использовании батарей с большой мощностью (мощность можно наращивать, добавляя панели), можно использовать энергию для нагрева воды. Комплект солнечных батарей для дачи или загородного дома в этом случае будет не только экономным, но и полезным, особенно на участках, где существуют перебои с подачей воды, или ее отключают на лето.

Чтобы нагрев воды и подача электричества в дом поступали с максимальной выгодой, солнечная батарея устанавливается на крыше дома. Нагрев панелей в этом случае будет максимально эффективным. От пластин ведут две батареи, по одной холодная вода поступает к батарее, нагревается и поступает во внешний теплообменник. Далее в котел и распределяется к душу или раковине. Если солнечная батарея довольно большая можно попробовать подключить радиаторы с теплоносителем в виде воды. Для этого потребуется большой котел или бак, электрический насос и ТЭН.

Если от солнечной энергии будет работать и источник горячей воды, то необходимо рассчитать мощность и для него. В среднем 1 квадратный метр площади панели на человека. Примерно по такой же формуле рассчитывается и затраты на теплый пол, один квадратный метр панели на 10 квадратных метров пола.

Если в году не так много солнечных дней, преобладают пасмурные дни и долгая зима, лучше использовать солнечную энергию, как дополнительный источник электричества. Также для эффективной работы следует убрать возможные помехи (тень от деревьев) или исключить близость высоток. Для установки оборудования и монтажа панелей можно воспользоваться видео инструкцией.

Эффективное использование энергии солнца

Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.

Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.


Эффективность солнечного отопления в наших широтах довольно низка, что объясняется недостаточным количеством солнечных дней для регулярной работы системы (+)

Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году. Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.

Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.


Существенный недостаток отопления, основанного на применении солнечных коллекторов, заключается в отсутствии возможности накапливать тепловую энергию. В схему включен только расширительный бак (+)

Открытые солнечные коллекторы

Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель.

В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.


Солнечные коллекторы открытого типа не способны справиться с отоплением частного дома. Из-за отсутствия изоляции теплоноситель быстро остывает. Их используют в летнее время в основном для нагрева воды в душевых или бассейнах

У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.

Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяются их преимущественно в летний период для подогрева воды в бассейнах или летних душевых.

Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.

Самый простой солнечный коллектор с теплоприемником, сделанным из бухты полимерных труб, обеспечит поставку подогретой воды на даче для полива и бытовых нужд

Трубчатые коллекторные разновидности

Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.

Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.


Трубчатый коллектор имеет модульную структуру. Основным элементом является вакуумная трубка, количество трубок варьируется от 18 до 30, что позволяет точно подобрать мощность системы

Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.

Специальное многослойное покрытие создает своего рода оптическую ловушку для солнечных лучей. На схеме частично показана внешняя стенка вакуумной колбы отражающая лучи на стенки внутренней колбы (+)

По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.

Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.


При цилиндрической форме трубки солнечные лучи всегда падают перпендикулярно поверхности

Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.

Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.


Свое название система получила от перьевого абсорбера, который плотно обхватывает тепловой канал из теплопроводящего металла

Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.

По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe). Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.


Поскольку легкоиспаряющаяся жидкость естественным образом стекает на дно термотрубки, минимальный угол наклона составляет 20° С

Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.

В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении. В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.

Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.

При прямоточном подключении давление в системе не может быть высоким, так как внутри колбы технический вакуум

Прямоточные системы более эффективны так как сразу нагревают теплоноситель. Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.

Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.

Достоинства:

  • низкие теплопотери;
  • способность работать при температуре до -30⁰С;
  • эффективная производительность в течение всего светового дня;
  • хорошая работоспособность в областях с умеренным и холодным климатом;
  • низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
  • возможность производства высокой температуры теплоносителя.

Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность.

Обладает следующими недостатками:

  • не способна к самоочистке от снега, льда, инея;
  • высокая стоимость.

Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.


Трубчатые коллекторы относятся к гелиоустановкам открытого типа, потому не подходят для круглогодичного использования в системах отопления (+)

Плоские закрытые системы

Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.

В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.

С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.


Плоские солнечные коллекторы отличаются максимальной производительностью и простой конструкцией. КПД их увеличен за счет применения абсорбера. Они способны улавливать рассеянное и прямое солнечное излучение

В перечне преимуществ закрытых плоских панелей числятся:

  • простота конструкции;
  • хорошая производительность в регионах с теплым климатом;
  • возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
  • способность самоочищаться от снега и инея;
  • низкая цена.

Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.

К недостаткам можно отнести:

  • высокие теплопотери;
  • большой вес;
  • высокая парусность при расположении панелей под углом к горизонту;
  • ограничения в производительности при перепадах температуры более 40°С.

Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.

Желающим сделать солнечный коллектор собственными руками для устройства отопления на даче предлагаем ознакомиться с проверенными на практике схемами и пошаговыми инструкциями по сборке.

Преимущества отопительной системы на солнечных батареях

Можно отметить несколько достоинств солнечных батарей для отопления дома:

  • Круглый год ваш дом обеспечен необходимым теплом. Также можно регулировать температурный режим в доме по своему усмотрению.
  • Тотальная независимость от жилищно-комунальных служб. Теперь вам не придется платить огромные счета за отопление.
  • Солнечная энергия – это такой запас, который можно использовать на различные нужды бытового характера.
  • У таких батарей очень хороший эксплуатационный срок. Они редко выходят из строя, поэтому не придется беспокоиться о том, что необходим ремонт или замена некоторых компонентов.

Есть некоторые нюансы, на которые стоит обратить внимание перед тем, как остановить свой выбор на данной системе. Ведь такая система может подойти не для всех

Во многом качество такой отопительной системы зависит от географии проживания. Если вы проживаете в таком регионе, где солнце светит далеко не каждый день, то такие системы будут неэффективными. Еще одним недостатком данной системы является то, что солнечные батареи стоят недешево. Правда, не стоит забывать о том, что такая система со временем себя полностью окупит.

Продолжительность солнечного сияния на территории России

Для того чтобы снабдить дом необходимым количеством тепла, потребуется от 15 до 20 кв. метров площади солнечных батарей. Один квадратный метр выделяет в среднем до 120Вт.

Для того чтобы получать около 500кВт тепла в месяц, нужно чтобы в месяце было около 20 солнечных дней.

Обязательным условием является установка солнечных батарей на южную сторону крыши, так как на нее распространяется больше всего тепла. Для того чтобы отопление от солнечных батарей было максимально эффективным, угол наклона крыши должен составлять около 45 градусов. Желательно, чтобы возле дома не росли высокие деревья и не находились другие предметы, которые могут создавать тень. Стропильная система дома должна обладать необходимой прочностью и надежностью. Так как солнечные батареи не совсем легкие, нужно позаботиться о том, чтобы они не нанесли вред зданию и не спровоцировали разрушительные процессы. Вероятность обрушения возрастает зимой, так как в это время на крыше, помимо тяжелых батарей, будет накапливаться снег.

Солнечные батареи как правило размешают на крыше дома

Несмотря на то, что солнечные батареи стоят довольно дорого, они все больше набирают популярность. Их используют даже там, где климат не слишком жаркий. Такую систему можно использовать и в качестве дополнительного отопления дома. Наиболее эффективны такие системы в летние месяцы, когда солнце светит почти каждый день. Однако не стоит забывать о том, что дом необходимо отапливать преимущественно в зимние месяцы.

Метод увеличения производительности

Обычно, поэкспериментировав с небольшим количеством солнечных модулей, владельцы частных домов идут дальше и совершенствуют систему различными способами.

Самый простой способ – это увеличение количества задействованных модулей, соответственно, привлечение дополнительных площадей для их размещения и покупка более мощного сопутствующего оборудования

Что делать, если существует дефицит свободной площади? Вот несколько рекомендаций для повышения эффективности солнечной станции (с фотоэлементами или коллекторами):

  • Изменение ориентации модулей. Перемещение элементов относительно положения солнца. Проще говоря, установка основной части панелей на южной стороне. При длинном световом дне также оптимально задействовать поверхности, выходящие на восток и запад.
  • Регулировка угла наклона. Производитель обычно указывает, какой угол является наиболее предпочтительным (например, 45º), но порой при монтаже приходится вносить свои коррективы с учетом географической широты.
  • Правильный выбор места установки. Крыша подходит, потому что чаще всего является наивысшей плоскостью и не затеняется другими объектами (предположим, садовыми деревьями). Но существуют еще более подходящие площади – поворотные устройства слежения за солнцем.

При перпендикулярном расположении элементов к лучам солнца система работает более эффективно, однако на стабильно закрепленной поверхности (например, крыше) это возможно лишь на короткий промежуток времени. Чтобы его увеличить, придумали практичные устройства слежения.


Механизмы слежения – это динамические платформы, которые своей плоскостью поворачиваются вслед за солнцем. Благодаря им производительность генератора увеличивается летом примерно на 35-40%, зимой – на 10-12 %

Большим минусом устройств слежения является их высокая стоимость. В некоторых случаях она не окупается, поэтому нет смысла вкладываться в бесполезные механизмы.

Подсчитано, что 8 панелей – минимальное количество, при котором затраты со временем оправдают себя. Можно задействовать и 3-4 модуля, но при одном условии: если они напрямую, в обход аккумуляторов, подключены к водяному насосу.

Буквально на днях компания Тесла Моторс объявила о создании нового типа крыши – с интегрированными солнечными батареями. Илон Маск заявил, что модифицированная крыша будет дешевле, чем обычная кровля с установленными на нее коллекторами или модулями.

Самые простые варианты гелиоколлекторов для летнего душа

Элементарность самых непритязательных вариантов солнечных коллекторов не означает их неэффективность. Несмотря на порой хлипкую не привлекательную конструкцию, часто собранную из хлама, они свои функции выполняют.

Рекомендации:

  • абсорбер желательно поместить в герметичный корпус, как минимум обернуть полиэтиленом;
  • передняя крышка должна быть прозрачной, а если она является частью абсорбера, то можно применять темный или матовый материал, рекомендованный и для других частей;
  • задняя стенка должна обрабатываться особо — на нее ставят черный материал или фольгу отражающие свет, сохраняющие тепло внутри;
  • лучший материал для змеевика, корпуса, деталей — металл. На солнце он будет не просто нагреваться, а раскаляться.

Впрочем, даже если не придерживаться некоторых указанных выше советов, коллектор будет выполнять свои функции. Рассмотрим яркие примеры.

Простой резиновый шланг, полипропиленовые трубы в герметичном корпусе:

Выше на последнем фото отличное решение — черное ограниченное пространство создает эффект духовки, змеевик толстый, его стенки тонкие, нагревается быстро.

Из ПЭТ бутылок, бутылей

Элементарный способ — гелиоколлекторы из пластиковых бутылок. Конечно же, их крайне рекомендовано выкрасить в черный цвет, подойдет даже обычный баллончик с краской. В одном из вариантов бутылки используются как кожух для труб змеевика.

Схема системы с ПЭТ бутылками:

Тут пластиковые бутылки с черным уплотнителем выступают кожухом для змеевика:

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]