Любопытная история «бензиновой пилюли» или как люди пытались превратить воду в топливо


Свойства воды как топлива

Формула воды известна практически каждому – H2O. В ней присутствуют два атома водорода (H2) и один кислорода (O2). Они соединены между собой ковалентной связью. Здесь стоит напомнить о сути любого топлива. Это вещества, способные к окислению под действием окислителя, которым является кислород.

Функцию окисла в составе воды может выполнять молекула кислорода (O2). Водород (H2) при этом становится своеобразным топливом. При его горении выделяется в 3 раза больше энергии, нежели при использовании обычного природного газа, и в 2 раза больше, чем при сжигании бензина. Именно эти свойства легли в основу идеи использовать воду вместо топлива.

Общественный транспорт на водороде

В европейских городах на маршруты начинает выходить водородный общественный транспорт – хотя и только в пилотном режиме.

Например, в Эстонии появились беспилотные микроавтобусы на водородном топливе, а по Риге ездят 10 троллейбусов, которые используют водород на случай отключения электричества или поломки. Такой троллейбус курсирует без дозаправки весь день, только к вечеру заезжая на пока что единственную в Риге заправочную станцию (на ней заправляются и частные авто).

Есть в Риге и водородный автобус – пока он ходит по одному маршруту в тестовом режиме: нужно оценить, сколько топлива ему понадобится зимой, когда потребуется отапливать салон. Через два года в Риге уже 12 автобусов будут ездить на водороде.

А в Копенгагене появились «водородные» такси. Таксопарк, правда, пока что небольшой — всего на 20 автомобилей.

Коммунальная техника тоже начала переходить на водород. Например, во Фрайбурге (Германия) появились два водородных мусоровоза.

В немецком городе Фрайбурге появились мусоровозы на водородном топливе

Существует ли вечное полено

В реальности это не бревно, а обычный металлический бак (труба), заваренный с обеих сторон. Сверху по всей длине в нем сделаны отверстия, предназначенные для выхода пара. В самой трубе тоже есть отверстие, которое можно закрывать при помощи вентиля после того, как весь объем будет заполнен водой.

Можно использовать холодную, но с горячей нагрев будет быстрее. Как работает устройство:

  1. Бак кладут на самый низ печки. Слева, справа и сверху обкладывают его обычными поленьями. Печку растапливают.
  2. При разогреве до большой температуры из трубы начинает выходить водяной пар.
  3. Он поступает на горящие угли, смешиваясь при этом с воздухом. Удельная теплоемкость такой смеси в 2 раза больше, чем у обычного воздуха. Водяной пар имеет теплоемкость 2,14 кДж/кг·К, а воздух – 1 кДж/кг·К.

Результаты такого эксперимента по заявлениям тех, кто его проводил:

  • Из дыма уходит черная сажа. Это объясняется реакцией частичек углерода с кислородом.
  • Пламя становится более насыщенным, с длинными языками.
  • Дрова горят дольше: 1 час 40 мин. в сравнении с 1 часом 10 мин. при горении без вечного полена. Время увеличивается на 40%.

Поезда на водороде

С 2022 года в Германии можно сесть на первый в мире водородный поезд Coradia iLint. Он развивает скорость до 140 километров в час и может преодолеть почти тысячу километров без дозаправки – примерно столько же, сколько поезда на дизеле.

Пока что по Германии курсируют два водородных поезда. Разработчик этих поездов, французская компания Alstom, поначалу собиралась построить еще 14. Но поезда на водороде оказались настолько востребованными, что в 2022 году немецкие железнодорожные компании заказали уже 41 водородный поезд.

В Португалии тоже есть поезд на водороде, всего один, зато какой: винтажный Vouginha, на котором летом можно прокатиться в Порту. Этот исторический поезд ходит по последней оставшейся в Португалии узкоколейной железной дороге, а его вагоны сохранились с 1908 года.

Вперед в прошлое: 5 роскошных туристических поездов в Европе

Почему же водой до сих пор не топят

Межмолекулярные связи воды возникают и разрываются гораздо легче, чем внутримолекулярные. Поэтому именно их и решили использовать в процессах теплообмена. Химиками экспериментально было установлено, что энергия межмолекулярных связей воды находится в пределах от 0,26 до 0,5 эВ (электронвольт).

Проблема заключается в том, что для получения топлива из воды ее необходимо разложить на составляющие. Простыми словами, ее нужно разложить на кислород и водород, затем сжечь водород и вновь получить воду. Расщепление достигается путем пропускания через жидкость электрического тока.

При кипении вода не разрывается на отдельные молекулы, а только испаряется. Нагревание от обычного горения не вызывает в жидкости никаких других реакций. Причем и на этот процесс требуется много энергии, которую можно было бы применить с пользой. К примеру:

  • сжигание 1 кг сухих дров с долей влажности не более 20% дает около 3,9 кВт;
  • если уровень влажности древесины повышается до 50%, то с 1 кг выделяется уже всего 2,2 кВт.

Разложение воды для получения реального горения требует значительных затрат энергии. Ее нужно намного больше, нежели выделится при использовании восстановленных элементов вновь в качестве горючего. Можно привести примерное соотношение:

  • 100% энергии – на расщепление;
  • 75% энергии – при сжигании восстановленных составляющих.

Именно тот факт, что при обратной реакции выделенных водорода и кислорода выделяется меньше энергии, и выступает причиной, почему вода как топливо для автомобилей и не только до сих пор не используется. Экономически такой метод оказался невыгоден. Более реально сделать топливо из мусора. Оно может быть жидким, газообразным и твердым.

Существует ли «водный» автомобиль

В 2008 году в Японии «водное» авто было представлено компанией Genepax на выставке в Осаке. В качестве топлива можно было использовать стакан воды из-под крана или из реки и даже обычную газировку.

Устройство расщепляло жидкость на молекулы водорода и кислорода, которые начинали гореть и давать автомобилю энергию для езды. На сегодня известно, что компания Genepax уже через год разорилась и закрылась.

Самолеты на водороде

Это пока дело будущего, но уже сейчас идут активные разработки водородных самолетов. Например, во Франции европейская компания Airbus создала три прототипа коммерческого самолета на водороде. Конструкция одного из них позволяет безопасно хранить водородное топливо, поэтому такой самолет сможет поднять в воздух до 200 человек для перелета на 3,7 тысячи километров — в отличие от двух других моделей, рассчитанных на 100 пассажиров при той же дальности маршрута.

Конструкторы того же Airbus разработали съемный водородный двигатель для самолетов, который позволит не зависеть от наземной инфраструктуры. Водородное топливо в него не закачивается, а устанавливается в переносных капсулах. Поэтому самолеты с такими двигателями смогут заправляться в аэропортах без устройств для подачи водородного топлива.

В прошлом году Евросоюз объявил новую инициативу RefuelEU: поиск решений для экологически чистой авиации. Теперь перед Евросоюзом стоит задача перевести до 1-2% европейских самолетов на «зеленое» топливо, в том числе на водород.

В ЕС предложили переводить самолеты на возобновляемое топливо

Добавление воды в обычное топливо

Вода как топливо для вашего автомобиля может применяться в составе обычной солярки. Это еще одно предположение, которое было выдвинуто «домашними» изобретателями. Оказалось, что при добавлении в бутылку с водой небольшого количества солярки полученная смесь горит. Причем выделяется меньше копоти, а процесс горения становится более бурным.

Также в процессе горения бумажки, которую окунули в полученную смесь, появляется треск, но он всего лишь указывает на испарение жидкости. Кроме того, взбалтывание не растворяет солярку в воде. Однородной смеси здесь не получится. Со временем солярка, как и масло или бензин, собирается на поверхности.

Похожий эксперимент провели с трактором, в который залили солярку и воду, смешанные в определенных пропорциях. Агрегат завелся и стал тарахтеть, стоя на месте. Но только на это и хватает энергии подобного топлива. Да и высок риск, что двигатель выйдет из строя.

А хватит ли водорода для транспорта?

К 2030 году Евросоюз собирается ежегодно производить 40 гигаватт водородной энергии, а к 2050 году водород будет обеспечивать четверть всей потребности в энергии. Этого водорода хватит, например, чтобы обеспечить экологичным топливом 42 миллиона автомобилей, 1,7 миллиона грузовиков, около 500 тысяч автобусов и более 5,5 тысяч поездов. Это часть «Водородной стратегии для климатически нейтральной Европы»: там Евросоюз определил водород в качестве одной из шести ключевых стратегических областей, где необходимы серьезные инвестиции.

Классификация котельных

По назначению котельные подразделяются на:

  • отопительные – для обеспечения теплом систем отопления, вентиляции и горячего водоснабжения;
  • отопительно-производственные – для обеспечения теплом систем отопления, вентиляции, горячего водоснабжения и для технологического теплоснабжения;
  • производственные – для технологического теплоснабжения;
  • энергетические – вырабатывающие перегретый пар для получения электроэнергии в турбоагрегатах (на такие котельные СНиП II-35–76 «Котельные установки» не распространяется).

По размещению котельные подразделяются на:

  • отдельно стоящие;
  • пристроенные к зданиям другого назначения;
  • встроенные в здания другого назначения независимо от этажа размещения;
  • крышные, располагаемые (размещаемые) на покрытии здания непосредственно или на специально устроенном основании над покрытием.

По надежности отпуска тепла потребителям котельные относятся:

  • к первой категории – котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла;
  • ко второй категории – остальные котельные.

Потребители тепла по надежности теплоснабжения относятся:

  • к первой категории – потребители, нарушение теплоснабжения которых связано с опасностью для жизни людей или со значительным ущербом народному хозяйству (повреждение технологического оборудования, массовый брак продукции);
  • ко второй категории – остальные потребители тепла.

Основные технические характеристики паровых и водогрейных котлов

Расчетные параметры, характеризующие работу котла, указываются в паспорте котла, составленном изготовителем по установленной форме (прил. 4 к ПБ 10-574–03) и хранящемся у владельца в течение всего срока эксплуатации.

На каждом котле должна быть прикреплена заводская табличка с маркировкой паспортных данных, нанесенных способом, обеспечивающим четкость и долговечность изображения.

На табличке парового котла должны быть нанесены следующие данные:

  • наименование, товарный знак организации-изготовителя;
  • обозначение котла;
  • номер котла по системе нумерации организации-изготовителя;
  • год изготовления;
  • номинальная паропроизводительность Dп в т/ч;
  • рабочее давление на выходе в МПа (кгс/см2);
  • номинальная температура пара на выходе в °С.

На табличке водогрейного котла должны быть нанесены следующие данные:

  • наименование, товарный знак организации-изготовителя;
  • обозначение котла;
  • номер котла по системе нумерации организации-изготовителя;
  • год изготовления;
  • номинальная теплопроизводительность Q в МВт (Гкал/ч); рабочее давление на выходе в МПа (кгс/см2);
  • номинальная температура воды на выходе в °С.

В обозначении парового котла приводятся:

  • тип,
  • паропроизводительность (т/ч),
  • абсолютное (избыточное) давление пара рп, (МПа или кгс/см2),
  • вид топлива (Г – газ, М – мазут);
  • котлы под наддувом обозначаются буквой Н.

Например: ДКВР-10/13; Е-25-2,4 ГМ; ДЕ-6,5/14-225 ГМ; Е-1/9-Г.

В обозначении водогрейного котла приводятся:

  • тип – КВ (котел водогрейный);
  • вид топлива (Г – газ, М (Ж) – мазут, соляра);
  • тип топки (Н – под наддувом);
  • номинальная тепловая мощность (МВт или Гкал/ч);
  • номинальная температура воды на выходе из котла, °С;
  • давление газа (Гн – низкое; Гс – среднее);
  • автоматизированный котел обозначается буквой «а»;
  • С – стальной.

Например: КВ-ГМ-10-50; КСВа-2,5-Гс; КВа-3-95; КВа-0,75Ж-115.

На каждом котле, введенном в эксплуатацию и после проведенных технических освидетельствований, должна быть на видном месте прикреплена табличка форматом не менее 300×200 мм с указанием следующих данных:

  • регистрационный номер;
  • разрешенное давление;
  • число, месяц и год следующего внутреннего осмотра и гидравлического испытания.

Основные технические характеристики паровых котлов:

  • номинальная паропроизводительность, Dп, т/ч – максимальное рабочее количество пара, вырабатываемого котлом, в течение 1 ч;
  • параметры получаемого пара:
  • рабочее (расчетное, или разрешенное) давление пара, рп, МПа (кгс/см2);
  • пробное давление, рпроб, МПа (кгс/см2);
  • вид пара (насыщенный, перегретый);
  • температура насыщенного пара, tнас, °С (при рабочем давлении пара рп или температуре перегретого пара, tпп, °С);
  • температура питательной воды, °С;
  • паровой и водяной объем котла, м3;
  • объем воды, м3;
  • время испарения этого объема, мин.

Основные технические характеристики водогрейных котлов:

номинальная теплопроизводительность (тепловая мощность), Q, Гкал/час (МВт) – максимальное рабочее количество теплоты, воспринимаемое водой, за 1 ч работы; 1 Гкал/ч = 1,163 МВт;

параметры воды:

  • рабочее давление воды, МПа (кгс/см2);
  • минимально допустимое давление воды рв при номинальной температуре tв;
  • пробное давление, рпроб, МПа (кгс/см2);
  • минимально допустимая температура воды на входе в котел, °С;
  • номинальная температура воды на выходе из котла, °С;
  • номинальный расход воды через котел, Gв, м3/ч, а также минимально и максимально допустимый;
  • гидравлическое сопротивление, не более, МПа.

Общие параметры, характеризующие паровые и водогрейные котлы:

  • вид топлива и его характеристики;
  • тип горелочного устройства;
  • поверхность нагрева котла: радиационная, конвективная, общая, S, м2;
  • расчетный КПД, брутто, % при сжигании газа и мазута;
  • сопротивление газового и воздушного трактов, Па (мм вод. ст.);
  • температура продуктов сгорания на выходе из топки, за котлом, температура уходящих газов – при сжигании газа и мазута;
  • содержание в уходящих газах О2, СО, NOX;
  • конструктивные показатели: внутренний диаметр барабанов, толщина стенки барабанов, длина цилиндрической части верхнего и нижнего барабанов; диаметры опускных труб, экранных и конвективных труб; шаг труб экранов, их число; габариты котла.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]