С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой теплогенератор своими руками. Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.
Немного истории
Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.
Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.
Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.
Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.
За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!
К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.
Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.
Информация об устройстве
Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.
Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.
С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.
Принцип действия
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор
. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор; - Активатор раскручивает жидкую среду
. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию; - Преобразование механической энергии в тепловую
. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Что такое кавитация
Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.
Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.
- эрозия металлов;
- питтинговая коррозия;
- появление вибраций.
Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.
Сделать своими руками?
Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:
- газовые, твердотопливные, электрические котлы в тандеме с водяными системами отопления;
- электрические обогреватели;
- системы ПЛЭН;
- теплые инфракрасные полы;
- кондиционер;
- тепловые насосы или гелиосистемы – если хочется экзотики.
Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.
По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.
Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?
Установка насоса
Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности
На что надо обратить внимание?
- Насос должен быть центробежным.
- Ваш двигатель сможет его раскрутить.
Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.
Схема гидровихревого теплогенератора.
Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.
Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.
Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.
- Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
- Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
- Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
- Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
- Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.
Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.
Гаситель вихрей
На этом основана работа гасителя вихрей:
- Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
- Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
- Пластины закрепляются внутрь колец друг напротив друга.
- Гаситель вставляется напротив сопла.
Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.
В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.
Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:
- окрасить все металлические поверхности;
- изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
- во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
- до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.
Принцип работы индукционного нагрева
В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.
Самодельный инвенторный нагреватель позволяет производить нагрев быстро и до очень высоких температур. С помощью таких устройств можно не только нагревать воду, но даже плавить различные металлы
Если внутрь индуктора или близ него разместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.
Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается. Широко применяется этот принцип в области обработки металла: его плавки, ковки, пайки наплавки и т. п. С не меньшим успехом вихревой индукционный нагреватель можно использовать для подогрева воды.
Печи на твердом топливе ИТПром
Э
ффективная и надежная печь для отопления , Россия, отлично зарекомендовала себя в работе на дешевом топливе в виде отходов древесины от мебельного производства, обработки древесного сырья, горбыля и прочих твердотопливных отходов, включая самый дешевый каменный уголь.
О
бъем топочного пространства составляет 1/4 кубического метра, что позволяет загрузить достаточное количество топлива и тем самым обеспечить длительное горение и поддержание тепла в обогреваемых помещениях.
М
аксимальная площадь отапливаемого помещения при средней высоте потолка 4-5м составляет 1500м2, что позволяет обеспечить теплом небольшие объекты, такие как автосервисы, лесопилки, мелкое мебельное производство, мастерские, небольшие цеха, фермы, склады и другие коммерческие объекты.
Т
опка печки футерована огнеупорным шамотным кирпичом, обладающим высокой теплоемкостью и стойкостью к перепадам температур.
В
низу топки установлены колосниковые чугунные решетки и стальной поддон.
П
ечь окрашена жаропрочной краской и стыки уплотнены огнестойким и прочным к ударам герметиком.
Т
еплообменник выполнен из высокопрочных стальных бесшовных холоднокатаных труб, предназначенных для использования в котлах и обеспечивающих эффективный теплообмен при прохождении воздуха.
Т
епловой мощности печек
ПРОМА
достаточно для отопления небольших производственных площадей, таких как мебельное производство, различного рода мастерские, теплицы, объекты животноводства и др.
Н
аиболее дешевой эксплуатация печки
ПРОМА
будет там, где с избытком есть древесные отходы, неделовая древесина, дешевый бурый уголь и т.п. горючие материалы.
Р
егионы с наличием деревообрабатывающих производств, богатые лесосырьевыми ресурсами и слабо газифицированные – основные потребители печек на древесных отходах и угле.
О
сновное преимущество данных печек по сравнению с другими печами на твердом топливе – это высокая тепловая мощность,
до 150кВт
, позволяющая отапливать достаточно большие площади, наличие газовоздушного теплообменника, позволяющего существенно повысить эффективность обогрева помещений и приточного вентилятора, обеспечивающего принудительную подачу воздуха в теплообменник печи и далее, по воздуховодам непосредственно в отапливаемые помещения.
Печи ПРОМА
прекрасно подойдут для отопления жилых и бытовых помещений. Тепловой мощности этих печей достаточно для отопления жилого дома площадью
от 300 до 1500м2
.Поступление теплого воздуха в помещения обеспечивают подающие воздуховоды.Эти печи значительно эффективнее широко применяемых у нас печей на дровах, работающих на конвекционном принципе (печи типа Буржуйка, Булерьян и т.п.). В этих печах тепло от металлических конструкций, труб и пр. передается холодному воздуху, который нагреваясь, обтекая металлические поверхности и проходя в конвекционных трубах, поднимается вверх. Таким образом, происходит циркуляция воздуха и постепенный прогрев помещения.
Печи ПРОМА
устанавливаются вне отапливаемого помещения, а теплый воздух подается в помещение по воздуховоду с помощью вентилятора. Происходит быстрый прогрев помещения и постоянная циркуляция воздуха.
Принцип действия
Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.
В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.
Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.
Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.
Достоинства вихревого теплогенератора
:
- Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
- Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
- Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
- Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
- Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.
Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы
: это высокая стоимость и редкое применение на практике.
Работает или нет?
Однако тут возникает ключевой вопрос
и главная загадка ГВТГ. А именно – эффект дополнительного тепловыделения, о котором заявляют некоторые производители. В двух абзацах суть проблемы вот в чем.
Если объяснять нагрев воды в генераторе
прямым преобразованием работы в теплоту – за счет, например, внутреннего трения в жидкости, или схлопывания газовых пузырьков на тормозных устройствах, или рассеяния энергии акустических колебаний, – то закон сохранения энергии не нарушается. И коэффициент преобразования энергии будет меньше единицы.
Но если действительно есть дополнительное тепловыделение
, и коэффициент преобразования больше 100%, то к объяснению аномального явления придется привлечь некоторый арсенал альтернативной науки: теорию мирового эфира, специфическое толкование теоремы о вириале, торсионные поля, перекристаллизацию жидкой воды, холодный термоядерный синтез и, наконец, воздействие космологического векторного потенциала.
Поэтому мы решили проверить на практике
, как работает гидровихревой теплогенератор, разработанный и выпускаемый по патенту (№ 2301947 от 27.06.07) ООО «Группа Константа». Цели ставились две. Первая: понять, можно ли на основании ГВТГ построить эффективную систему теплоснабжения загородного дома. Вторая: подручными средствами проверить, устоит ли закон сохранения энергии.
Для испытаний
ООО «Группа Константа» предоставила свой ГВТГ с электрическим насосом мощностью 4 кВт, пригодный для отопления загородного дома площадью 100 м 2 . Генератор работал по замкнутому циклу и за 27 минут нагрел 18 л воды от 11 до 80°С.
На основании полученных данных
мы построили график изменения температуры с течением времени. Одного взгляда на него достаточно, чтобы понять, что дополнительного выделения тепла не наблюдается. Пока вода была сравнительно холодной, температура росла линейно. При достижении 60°С одновременно стали изменяться и теплоемкость воды, и расти давление в системе. Темп нагрева стал падать. Все по классическому сценарию.
По результатам измерений
мы произвели расчеты эффективности преобразования энергии. И тоже получили вполне согласованные с традиционной научной парадигмой, но весьма впечатляющие результаты. А именно: за 0,45 часа 4−х киловаттный насос должен был потребить 1,8 кВт*ч электрической энергии. При этом тепловая энергия системы, согласно расчетам, составила 1,44 кВт*ч.
Таким образом, был на практике достигнут
коэффициент прямого преобразования больше 80%. Но на самом деле он выше. И если учесть, что напряжение в сети чуть ниже, чем 220 В, а тепло рассеивалось и шло на нагревание не только воды, но и самого металла, то можно, видимо, добиться и цифры 90%.
Сфера применения
Иллюстрация | Описание сферы применения |
Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами. Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами. | |
Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п. | |
Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции. |
Интеграция в отопительную систему частного дома
Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.
Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.
Преимущества применения кавитационных теплогенераторов
Достоинства вихревого источника альтернативной энергии | |
Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования. | |
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла. Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места. | |
Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет. | |
Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться. В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна. | |
Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение. | |
Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров. За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются. | |
Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме. Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить. | |
Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель. |
Виды
Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:
- Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
- Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
- Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.
Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.
Роторный теплогенератор
Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.
Рис. 3: конструкция генератора роторного типа
Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.
Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:
Рис. 4: дисковый теплогенератор
Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.
Трубчатые
Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.
В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.
Ультразвуковые
Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.
Рис. 5: принцип работы ультразвукового теплогенератора
Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.
Как сделать теплогенератор своими руками
Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.
Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.
На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.
Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.
Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.
По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.
Формула представляет собой следующее:
Епот = – 2 Екин
Где Екин =mV2/2 – это кинетическое движения Солнца;
Масса планеты – m, кг.
Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:
Утепляем ВТП
Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.
- Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
- Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
- Обматываем устройство термоизоляционным материалом.
- Помещаем генератор в кожух и плотно закрываем обе крышки.
Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.
Роторный теплогенератор
Этот агрегат представляет собой модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора. Не обойтись и без рабочей камеры и патрубков.
Внутри корпуса нашей гидродинамической конструкции стоит маховик в качестве рабочего колеса. Существует огромное количество разнообразных роторных конструкций генераторов тепла. Самой простой среди них является конструкция с диском.
На цилиндрическую поверхность диска ротора наноситься необходимое количество отверстий, которые должны иметь определенный диаметр и глубину. Их принято называть «ячейки Григгса». Стоит отметить, что размеры и количество просверленных отверстий будут изменяться в зависимости от калибра роторного диска и частоты вращения вала электромотора.
Корпус такого источника тепла чаще всего изготавливают в виде пустотелого цилиндра. По сути – это обычная труба с заваренными фланцами на концах. Зазор между внутренней частью корпуса и маховиком будет очень мал (примерно 1,5-2 мм).
Непосредственный подогрев воды будет происходить именно в данном зазоре. Нагревание жидкости получается за счет ее трения о поверхность ротора и корпуса одновременно, при этом диск маховика движется практически на предельных скоростях.
Кавитационные (образование пузырей) процессы, которые происходят в роторных ячейках, оказывают большое влияние на нагрев жидкости.
Роторный теплогенератор — это модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора
Как правило, диаметр диска в данном типе генераторов тепла составляет 300 мм, а скорость вращения гидроустройства 3200 оборотов в минуту. В зависимости от размеров ротора частота вращения будет различаться.
Анализируя конструкцию данной установки можно сделать вывод, что ее ресурс функционирования достаточно мал. Из-за постоянного нагрева и абразивного действия воды зазор постепенно расширяется.
Для чего используется?
Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.
Получается, что эффективность вихревого генератора – 1.2-1.5.
Описание генератора
Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.
Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).
Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.
Где используются вихревые теплогенераторы энергии:
- В холодильных установках;
- Для обеспечения отопления жилых зданий;
- Для нагрева промышленных помещений;
Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.
Видео: изучение вихревых теплогенераторов
Рекомендации по выбору
Особенности моделей
Вихревой кавитационный теплогенератор существует в разных исполнениях. Сегодня наиболее распространены устройства, работающие на водяной основе, то есть, в качестве теплоносителя выступает жидкость.
Но есть возможность приобрести и твердотопливный агрегат, на выходе которого образуется газообразная смесь дымового газа и воздушной среды.
Теплогенератор твердотопливный высокопроизводительный вихревой отличается возможностью сжигания древесины высокой влажности (до 65%). Соответственно, при выборе учитывается назначение агрегата и предполагаемая нагрузка, так как существуют исполнения с разным уровнем тепловой мощности. В зависимости от того, какой по величине объект предполагается обслуживать, подбирается подходящее устройство.
В случае с твердотопливным оборудованием важно учесть скорость расхода топлива, размеры погрузочной камеры и вид загрузки топлива
Можно подбирать вихревой разнотипный теплогенератор по уровню тепловой мощности, а можно обратить внимание на пункт в сопроводительной документации о том, какой величины объем допускается прогревать. Немаловажным является вес, а также габаритные размеры оборудования
Обзор моделей разных конструкций
Смотрим видео о продукции :
Если выбрать твердотопливное исполнение, то в данном случае рассматривается более производительное оборудование с тепловой мощностью от 250 до 700 кВт. Например, модели ТВВ-Р-250, ТВВ-Р-500, ТВВ-Р-700. Все они предполагают ручную загрузку топлива. Но более мощные исполнения потребляют больше топлива. Если модель 250 расходует 120 кг/час, то исполнение 700 потребляет около 340 кг/час. Существуют устройства намного более производительные тепловой мощностью 2 500 кВт. Если планируется использовать такие вихревые теплогенераторы, то их цена будет заметно выше.
Рекомендации по эксплуатации
Чем меньше габаритные размеры подобной техники, тем более простым будет ее эксплуатация. Например, существуют полностью автономные устройства с автоматическим управлением. При этом пользователю нет необходимости участвовать в процессе. А вот при использовании некоторых исполнений твердотопливных теплогенераторов без участия обученного оператора для загрузки топлива не обойтись, так как в данных агрегата предполагается ручная подача древесины.
Сегодня существуют разные исполнения подобной техники с полностью автоматизированным исполнением, включая и предустановленный температурный режим. Учитывая, что агрегаты такого рода полностью безопасны, как с точки зрения экологичности, так и с точки зрения пожарной безопасности, то нет необходимости их постоянного контроля.
Таким образом, для организации отопительной системы и горячего водоснабжения не всегда обязательно обращаться к стандартным решениям. На практике оказывается, что при использовании тепловых установок на базе вихревых теплогенераторов отмечается существенная экономия в сравнении с прочими видами отопительных систем.
В результате можно получить не просто высокопроизводительную технику, но еще и экономить при ее эксплуатации. Несмотря на довольно высокую стоимость подобных агрегатов, их дальнейшая эксплуатация полностью окупается, причем этого не придется ждать слишком долго, так как в некоторых случаях сроки окупаемости достигают 6 месяцев.
Обзор цен
Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.
Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:
Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.
Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.
Схема устройства вихревой теплосистемы.
Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.
Преимущества и недостатки
Среди преимуществ можно выделить следующие показатели:
- доступность;
- огромная экономия;
- не перегревается;
- КПД стремящийся к 100% (другим типам генераторов крайне сложно достичь таких показателей);
- доступность оборудования, что позволяет собрать прибор не хуже заводского.
Слабыми сторонами генератора Потапова считают:
- объемные габариты, занимающие большую площадь жилой зоны;
- высокий уровень шума мотора, при котором крайне сложно спать и отдыхать.
Генератор, используемый в промышленности, отличается от домашнего варианта лишь габаритами. Однако, иногда мощность домашнего агрегата настолько высока, что нет смысла его устанавливать в однокомнатной квартире, иначе минимальная температура при работе кавитатора будет не менее 35°С.
На видео интересный вариант вихревого теплогенератора на твердом топливе
Утепление вихревого двигателя
Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:
Готовый тепловой генератор.
- стекловата;
- минеральная вата;
- базальтовая вата.
Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: «Утепление трубопроводов минеральной ватой».
Какими особенностями наделены древесные печи длительного горения читайте в этой статье.
В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.
Советы, к которым лучше прислушаться
Схема устройства тепловой пушки.
- Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
- Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
- Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
- Это же относится и к гасителю колебаний. Его также можно видоизменять.
Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.
Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.
Пути повышения производительности
Схема теплового насоса.
В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.
Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.
Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.
- Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
- Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
- Сделайте крышки с одной и другой стороны.
- Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
- Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.
На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.
Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.
Вихревые индукционные обогреватели — принцип работы
Вихревые индукционные обогреватели работают на основе физического закона, что вихревые токи возникающие (индуцируемые) переменным магнитным полем нагревают окружающую среду.
В теории. Полый электромагнитный сердечник с индукционной катушкой защищены экранирующей оболочкой от воздействия окружающей среды. При подаче напряжения через клеммную коробку, создается переменное магнитное поле, индуцирующее вихревые токи в катушке сердечника, что приводит к нагреванию металлических систем теплообменной системы. Тепло поступает в систему циркуляции теплоносителя, нагревая его. Температура устанавливается с помощью терморегулятора, а термостат автоматически поддерживает заданную температуру.
На практике. Вихревые индукционные обогреватели это труба, обмотанная проводом, на который подается переменный ток. В трубу, чаще снизу, но можно и с боку, поступает холодный теплоноситель. Вихревые токи, которые создает переменный ток в проводах обмотанных вокруг трубы, нагревает трубу, а, следовательно, и нагревают воду.
Заводские модели
Если выбор пал на готовый агрегат, то лучше отдать предпочтение товарам следующих лидирующих производителей, имеющих гарантии и хорошие отзывы о теплогенераторах:
- Гравитон – 500 000 рублей;
- Юсмар – от 650 000 рублей;
- Евроальянс – от 75 000 рублей.
Помните, что эффективность теплогенератора зависит не только от качества агрегата, но и от места его использования.
Чем ближе к полюсам планеты, тем менее эффективен прибор, так как взаимодействие с Солнцем минимально.
На видео вихревой теплогенератор нового типа