Контроль
Контролирующая организация — опять-таки теплосети.
Что именно они контролируют?
- Несколько раз в течение зимы проводятся контрольные замеры температур и давлений подачи, обратки и смеси
. При отклонениях от температурного графика расчет элеватора отопления проводится заново с расточкой или уменьшением диаметра сопла. Разумеется, этого не стоит делать в пик холодов: при -40 на улице подъездное отопление может прихватить льдом уже через час после остановки циркуляции. - В рамках подготовки к отопительному сезону проверяется состояние запорной арматуры
. Проверка предельно проста: все задвижки в узле перекрываются, после чего открывается любой контрольный вентиль. Если вода из него поступает — нужно искать неисправность; кроме того, в любом положении задвижек у них не должно быть течей по сальникам. - Наконец, в конце отопительного сезона элеваторы в системе отопления наряду с самой системой проходят испытания на температуру . Теплоноситель при отключенной подаче ГВС разогревается до максимальных значений.
Как работает элеваторный узел в схеме централизованного теплоснабжения
Элеваторные узлы применяются в тепловых пунктах многоквартирных домов с середины прошлого века, отдельные экземпляры продолжают успешно работать до сих пор. Жильцы не торопятся менять морально устаревшие элементы на новую арматуру, оборудованную современной автоматикой, причем это нежелание вполне обосновано. Для прояснения сути вопроса предлагаем разобраться, что такое элеватор, его устройство и основные функции в системе отопления.
Назначение и характеристики
Элеватор отопления охлаждает перегретую воду до расчетной температуры, после этого подготовленная вода попадает в отопительные приборы, которые размещены в жилых помещениях. Охлаждение воды случается в тот момент, когда в элеваторе смешивается горячая вода из подающего трубопровода с остывшей из обратного.
Схема элеватора отопления наглядно показывает, что данный узел способствует увеличению эффективности работы всей отопительной системы здания. На него возложено сразу две функции – смесителя и циркуляционного насоса. Стоит такой узел недорого, ему не требуется электроэнергия. Но элеватор имеет и несколько недостатков:
- Перепад давления между трубопроводами прямого и обратного подавания должен быть на уровне 0,8-2 Бар.
- Нельзя регулировать выходной температурный режим.
- Должен быть точный расчет для каждого компонента элеватора.
Элеваторы широко применимы в коммунальном тепловом хозяйстве, так как они стабильны в работе тогда, когда в тепловых сетях изменяется тепловой и гидравлический режим. За элеватором отопления не требуется постоянно следить, все регулирование заключается в выборе правильного диаметра сопла.
Элеватор отопления состоит из трех элементов – струйного элеватора, сопла и камеры разрежения. Также есть и такое понятие, как обвязка элеватора. Здесь должна применяться необходимая запорная арматура, контрольные термометры и манометры.
Подбор элеватора отопления такого типа обусловлен тем, что здесь коэффициент смешения меняется от 2 до 5, в сравнении с обычными элеваторами без регулирования сопла, этот показатель остается неизменным. Так, в процессе применения элеваторов с регулируемым соплом можно немного снизить расходы на отопление.
Конструкция данного вида элеваторов имеет в своем составе регулирующий исполнительный механизм, обеспечивающий стабильность работы системы отопления при небольших расходах сетевой воды. В конусообразном сопле системы элеватора размещается регулирующая дроссельная игла и направляющее устройство, которое закручивает струю воды и играет роль кожуха дроссельной иглы.
Этот механизм имеет вращающийся от электропривода или вручную зубчатый валик. Он предназначен для перемещения дроссельной иглы в продольном направлении сопла, изменяет его эффективное сечение, после чего расход воды регулируется. Так, можно повысить расход сетевой воды от расчетного показателя на 10-20%, или уменьшить его практически до полного закрытия сопла. Уменьшение сечения сопла может привести к увеличению скорости потока сетевой воды и коэффициента смешения. Так температура воды снижается.
Что такое элеваторный узел отопления и для чего он используется?
Для того чтоб наглядно понять устройство и предназначение элеваторного узла можно зайти в обычный подвал многоэтажного дома. Там, среди остальных элементов теплового узла и можно найти нужную деталь.
Элеваторный узел отопления
Рассмотрим принципиальную схему подачи теплоносителя в систему отопления жилого дома. Горячая вода подается по трубопроводам к дому. Стоит отметить, что трубопроводов всего два, из которых:
- 1- подающий (подводит горячую воду к дому);
- 2- обратный (осуществляет отвод теплоносителя, отдавшего тепло, обратно в котельную);
Нагретая до определенной температуры воды из тепловой камеры попадает в подвал здания, где на вход в тепловой узел на трубопроводах установлена запорная арматура. Раньше в качестве запорной арматуры повсеместно устанавливались задвижки, теперь их постепенно вытесняют шаровые краны, изготовленные из стали. Дальнейший путь теплоносителя зависит от его температуры.
В нашей стране котельные работают по трем основным тепловым режимам:
Если вода в подающем трубопроводе нагрета не более чем до 95 0 С, то она просто распределяется по системе отопления при помощи коллектора, оснащенного регулировочными устройствами (балансировочными кранами). В том случае, если температура теплоносителя выше 95 0 С, то согласно действующим нормам такую воду нельзя подавать в отопительную систему. Нужно ее охладить. Именно здесь и вступает в работу элеваторный узел. Стоит отметить, что элеваторный узел отопления является наиболее дешевым и простым способом охлаждения теплоносителя.
Эффект от установки шайб
После установки шайб расход теплоносителя по трубопроводам тепловой сети снижается в 1,5-3 раза. Соответственно и количество работающих насосов в котельной также уменьшается. Отсюда возникает экономия топлива, электроэнергии, химреагентов для подпиточной воды. Появляется возможность повысить температуру воды на выходе из котельной. Подробнее о наладке наружных тепловых сетей и составе работ см…..Здесь надо дать ссылку на раздел сайта «Наладка тепловых сетей»
Шайбирование необходимо не только для регулирования наружных тепловых сетей, но и для системы отопления внутри зданий. Стояки системы отопления, находящиеся дальше от теплопункта, расположенного в доме, получают горячей воды меньше, здесь в квартирах холодно. В квартирах, расположенных близко к теплопункту, жарко, так как теплоносителя к ним поступает больше. Распределение расходов теплоносителя по стоякам в соответствии с требуемым количеством тепла осуществляется также с помощью расчета шайб и их установки на стояках.
Как заказать и купить элеватор водоструйный 40с10бк?
Для того, чтобы купить элеватор необходимо направить запрос в отдел продаж по координатам на странице КОНТАКТЫ. В запросе требуется указать номер элеватора и количество, а также необходимость доставки. Ответным сообщением Вам будет направлено ценовое предложение с указанием актуальной стоимости и наличия товара на складе.
Вы также можете направить запрос с помощью специальной формы — ОТПРАВИТЬ ЗАЯВКУ на сайте.
Доставка осуществляется транспортными компаниями во все регионы РФ. Возможна отгрузка продукции в страны Таможенного союза (Армения, Белоруссия, Казахстан, Киргизия). Стоимость доставки рассчитывается и оплачивается дополнительно.
Этапы шайбирования системы отопления
- Гидравлический расчет системы отопления, расчет шайб
- Разработка рекомендаций по улучшению работы теплопункта, системы отопления
- Установка регулирующих шайб на стояках (эту работу может проводить заказчик самостоятельно)
- Проверка выполнения рекомендованных мероприятий
- Анализ нового установившегося режима после шайбирования системы отопления
- Корректировка размера шайб в местах, где не достигнут требуемый результат (расчетным путем)
- Демонтаж шайб, требующих корректировки, установка новых шайб
На внутренних системах отопления шайбы можно устанавливать и зимой и летом. Проверять их работу – только в отопительный сезон.
Возможные проблемы и неисправности
Несмотря на прочность приборов, иногда элеваторный узел отопления дает сбои. Горячая вода и высокое давление быстро находят слабые места и провоцируют поломки.
Это неизбежно случается, когда отдельные узлы имеют сборку ненадлежащего качества, расчет диаметра сопла выполнен неверно, а также по причине образования засоров.
Шум
Элеватор отопления, работая, может создавать шум. Если такое наблюдается, значит, в выходной части сопла в процессе эксплуатации образовались трещины или задиры.
Причина появления неровностей кроется в перекосах сопла, вызванных подачей теплоносителя под высоким давлением. Такое случается, если избыточный напор не дросселируется регулятором расхода.
Не соответствие температуры
Качественную работу элеватора можно поставить под сомнение и тогда, когда температура на входе и выходе слишком различается с температурным графиком. Скорее всего, причиной тому завышенный диаметр сопла.
Не правильный расход воды
Неисправный дроссель приведет к изменению расхода воды в сравнении с проектным значением.
Такое нарушение легко определить по изменению температуры во входящей и обратной трубопроводных системах. Проблема решается путем ремонта регулятора расхода (дросселя).
Неисправные элементы конструкции
Если схема присоединения отопительной системы к наружной тепловой магистрали имеет независимый вид, то причину некачественной работы элеваторного узла могут вызвать неисправные насосы, водонагревательные узлы, запорная и предохранительная арматура, всевозможные утечки в трубопроводах и оборудовании, неисправность регуляторов.
К основным причинам, негативно влияющим на схему и принцип работы насосов, можно отнести разрушение эластичных муфт в соединениях насоса и валов электродвигателя, износ шарикоподшипников и разрушение посадочных мест под них, образование свищей и трещин на корпусе, старение сальников. Большинство перечисленных неисправностей устраняется ремонтом.
Неудовлетворительная работа водонагревателей наблюдается, когда нарушена герметичность труб, произошло их разрушение либо слипание трубного пучка. Решение проблемы состоит в замене труб.
Засоры
Засоры – это одна из распространенных причин плохого теплоснабжения. Их образование связано с попаданием грязи в систему, когда грязевые фильтры неисправны. Увеличивают проблему и отложения продуктов коррозии внутри труб.
Уровень засорения фильтров можно определить по показаниям манометров, установленных перед фильтром и после него. Значительный перепад давления подтвердит либо опровергнет предположение о степени засоренности. Для прочистки фильтров достаточно отвести грязь через спускные устройства, находящиеся в нижней части корпуса.
Любые неполадки трубопроводов и отопительного оборудования должны устраняться незамедлительно.
Незначительные замечания, не влияющие на работу отопительной системы, в обязательном порядке регистрируются в специальной документации, их включают в план текущих или капитальных ремонтных работ. Ремонт и устранение замечаний происходит в летнее время до начала очередного отопительного сезона.
Схемы подключения
Элеваторный узел может быть использован в системах с различными специфическими особенностями — однотрубных, автономных или иных линиях теплоснабжения. Принципы подачи теплоносителя, параметры потока не всегда позволяют обеспечить неизменный и стабильный результат на выходе. Для организации нормального теплоснабжения квартир или корректировки параметров потока, поступающего из магистральной сети, используются различные схемы подключения элеваторных узлов. Все они нуждаются в наличии дополнительного оборудования, иногда в достаточно больших объёмах, но результат, который достигается вследствие этого, компенсирует понесённые расходы. Рассмотрим существующие схемы подключения:
С регулятором расхода воды
Расход воды является основным фактором, делающим возможной регулировку режима обогрева помещений. Изменения расхода вызывают колебания температуры в жилых комнатах, что недопустимо. Вопрос решается установкой перед узлом смешивания регулятора, обеспечивающего постоянный расход воды и стабилизирующего тепловой режим.
Схема элеваторного узла смешения с регулятором расходом: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 4 — регулятор расхода; 5 — местная система отопления
Особенно важным такое решение становится в однотрубных системах, где имеется нагрузка в виде ГВС, дестабилизирующая расход горячей воды и создающая существенные колебания во время активного водоразбора (утренние и вечерние часы, праздничные и выходные дни). При этом данная схема не способна исправить ситуацию при изменениях температуры теплоносителя в магистральной линии, что является её недостатком, хоть и не слишком существенным. Падение температуры теплоносителя в питающих трубопроводах означает аварию на ТЭЦ или ином пункте нагрева, а это случается редко.
С регулирующим соплом
Схема подключения элеваторного узла с возможностью регулировки пропускной способности сопла позволяет оперативно реагировать на изменения параметров теплоносителя в магистральной линии.
Схема элеваторного узла с регулирующей иглой: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 5 — местная система отопления ; 6 — регулятор с иглой, вдвигаемой в сопло элеватора
При этом ручная регулировка малоэффективна, поскольку для этого надо постоянно подходить к элеватору, который обычно расположен в подвальном помещении. Наибольшая эффективность системы с регулируемым соплом достигается при полной автоматизации процесса, с использованием датчиков температуры и давления, подающих сигнал на сервопривод элеватора. Такая схема позволяет получить дополнительные возможности при настройке режима работы, но необходимость в ней возникает не всегда, а только в перегруженных или нестабильных системах с возможными колебаниями температуры теплоносителя.
Схема элеваторного узла с использованием датчиков температуры и давления, подающих сигнал на сервопривод элеватора
К недостаткам подобных схем принято относить необходимость изначально обеспечить высокое давление в системе, так как регулировка возможна лишь в пределах параметров потока в магистрали. Кроме того, нагрузки на механику, в частности — на сопло и иглу, создают необходимость постоянного наблюдения и своевременной замены элементов, вышедших из строя.
С регулирующим насосом
Подобные схемы используются при отсутствии достаточного для функционирования элеватора давления в питающих трубопроводах.
Схема элеваторного узла с корректирующим насосом: 1 — подающая линия тепловой сети; 2 — обратная линия тепловой сети; 3 — элеватор; 4 — регулятор расхода; 5 — местная система отопления ; 7 — регулятор температуры; 8 — смесительный насос
Увеличение давления делает возможным применение элеваторного узла в автономных тепловых сетях частного дома, позволяет обеспечить циркуляцию теплоносителя при исчезновении давления в магистрали. Насос устанавливается перед элеватором или на перемычке между прямым и обратным трубопроводами перед входом в элеватор. Для обеспечения нормального режима работы в дополнение к насосу требуется использовать регулятор температуры, а также необходимо подключение электропитания.
Принцип работы и схема узла
Поступающая в жилой дом горячая вода имеет температуру, соответствующую температурному графику теплоэлектроцентрали. Преодолев задвижки и грязевые фильтры, перегретая вода поступает в стальной корпус, а затем через сопло в камеру, где происходит смешение. Разница давлений толкает струю воды в расширенную часть корпуса, при этом происходит ее соединение с охлажденным теплоносителем из отопительной системы здания.
Перегретый теплоноситель, имея пониженное давление, с высокой скоростью стремится через сопло в камеру для смешивания, создавая разряжение. Как результат в камере за струей возникает эффект инжекции (подсасывания) теплоносителя из обратного трубопровода. Результатом смешения является вода, имеющая проектную температуру, которая и поступает в квартиры.
Схема элеваторного устройства дает детальное представление о функциональных возможностях этого аппарата.
Достоинства водоструйных элеваторов
Особенностью элеватора является одновременное выполнение двух задач: работать как смеситель и как циркуляционный насос. Примечательно, что функционирует элеваторный узел без затрат электроэнергии, так как принцип работы установки основан на использовании перепада давления на входе.
Применение водоструйных аппаратов имеет свои плюсы:
- несложная конструкция;
- невысокая стоимость;
- надежность;
- отсутствие потребности в электроэнергии.
С помощью новейших моделей элеваторов, оснащенных автоматикой, можно существенно экономить тепло. Это достигается путем регулирования температуры теплоносителя в зоне его выхода. Для достижения этой цели можно понижать температуру в квартирах ночью либо в дневное время, когда большинство людей находится на работе, учебе и пр.
Экономичный элеваторный узел отличается от обычного варианта наличием регулируемого сопла. Эти детали могут иметь различную конструкцию и уровень регулировки. Коэффициент смешения у аппарата с регулируемым соплом изменяется в пределах от 2 до 6. Как показала практика, этого вполне достаточно для отопительной системы жилого здания.
Принцип работы элеватора
Внешне конструкция напоминает большой тройник из металлических труб с присоединительными фланцами на концах. Как устроен элеватор внутри:
- левый патрубок (смотри чертеж) представляет собой сужающееся сопло расчетного диаметра;
- за соплом располагается смесительная камера цилиндрической формы;
- нижний патрубок служит для присоединения обратной магистрали к смешивающей камере;
- правый патрубок – это расширяющийся диффузор, направляющий теплоноситель в отопительную сеть многоэтажного дома.
На чертеже патрубок эжектируемого потока условно показан сверху, хотя обычно он располагается снизу
Примечание. В классическом исполнении элеватор не требует подключения к домовой электросети. Обновленный вариант изделия с регулируемым соплом и электроприводом присоединяется к внешнему источнику питания.
Стальной элеваторный узел подключается левым патрубком к подающей магистрали централизованной тепловой сети, нижним – к обратному трубопроводу. С обеих сторон элемента ставятся отсекающие задвижки, плюс сетчатый фильтр – отстойник (иначе – грязевик) на подаче. Традиционная схема теплового пункта с элеватором также включает манометры, термометры (на обеих линиях) и прибор учета потребленной энергии.
Теперь рассмотрим, как работает элеваторная перемычка:
- Перегретая вода из сети теплоснабжения проходит через левый патрубок к соплу.
- В момент прохождения сквозь узкое сечение сопла под высоким давлением течение потока ускоряется согласно закону Бернулли. Начинает действовать эффект водоструйного насоса, обеспечивающего циркуляцию теплоносителя в системе.
- В зоне смесительной камеры напор воды снижается до нормы.
- Струя, движущаяся с высокой скоростью в диффузор, создает разрежение в камере смешивания. Возникает эффект эжекции – поток жидкости с более высоким давлением увлекает через перемычку теплоноситель, возвращающийся из отопительной сети.
- В камере элеватора отопления происходит перемешивание охлажденной воды с перегретой, на выходе из диффузора получаем теплоноситель нужной температуры (до 95 °С).
Уточнение. Стоит отметить, что элеваторный узел также использует в работе принцип инжекции – смешивание двух струй с одновременной передачей энергии. Напор результирующего потока становится меньше, чем первоначального, но больше подсасываемого из обратки. Более понятно процесс показан на видео:
Главное условие нормальной работы элеватора – достаточный перепад давлений между магистральной подачей и обратной линией. Указанной разницы должно хватить на преодоление гидравлического сопротивления домового отопления и самого инжектора. Обратите внимание: вертикальная перемычка врезается в обратку под углом 45° для лучшего разделения потоков.
На подаче из теплосети давление самое высокое, при выходе из диффузора – среднее, в обратной магистрали — наиболее низкое. То же самое в элеваторе происходит с температурой воды
Выбор материала деталей элеватора ЭТА-П
При выборе материала для той или иной детали учитывают характер и величину нагрузки, действующей на деталь, способ изготовления, требования к износостойкости, условии ее эксплуатации и т.д
Особое внимание обращается на обеспечение статической и усталостной прочности, так как сроки службы деталей колеблются от 10 до 25 лет. Для изготовления элеваторов применяют углеродистые качественные конструкционные стали марок 30, 35, 40, 45, 40Х и 40ХН
Их используют в нормализованном состоянии для изготовления деталей, испытывающих сравнительно небольшие напряжения, а после закалки и высокого отпуска — для изготовления более нагруженных деталей. Стали марок 30 и 35 подвергают нормализации с температурой 880 — 900°С; закалку проводят в воде с температурой 860 — 880°С и отпуск при 550 — 660°С. Детали из сталей марок 40 и 45 подвергают нормализации при температуре 860 — 880°С или закалке в воде с температурой 840-860°С с последующим отпуском; температура отпуска назначается в зависимости от требуемых механических свойств.
Как функционирует элеватор
Если говорить простыми словами, то элеватор в системе отопления – это водяной насос, не требующий подведения энергии извне. Благодаря этому, да еще простой конструкции и низкой стоимости, элемент нашел свое место практически во всех тепловых пунктах, что строились в советское время. Но для его надежной работы нужны определенные условия, о чем будет сказано ниже.
Чтобы понять устройство элеватора системы отопления, следует изучить схему, представленную выше на рисунке. Агрегат чем-то напоминает обычный тройник и устанавливается на подающем трубопроводе, своим боковым отводом он присоединяется к обратной магистрали. Только через простой тройник вода из сети проходила бы сразу в обратный трубопровод и прямо в систему отопления без снижения температуры, что недопустимо.
Стандартный элеватор состоит из подающей трубы (предкамеры) со встроенным соплом расчетного диаметра и смесительной камеры, куда подводится остывший теплоноситель из обратки. На выходе из узла патрубок расширяется, образуя диффузор. Агрегат действует следующим образом:
- теплоноситель из сети с высокой температурой направляется в сопло;
- при прохождении через отверстие малого диаметра скорость потока возрастает, из-за чего за соплом возникает зона разрежения;
- разрежение вызывает подсасывание воды из обратного трубопровода;
- потоки смешиваются в камере и выходят в систему отопления через диффузор.
Как происходит описанный процесс, наглядно показывает схема элеваторного узла, где все потоки обозначены разными цветами:
Непременное условие устойчивой работы узла заключается в том, чтобы величина перепада давления между подающей и обратной магистралью сети теплоснабжения было больше, чем гидравлическое сопротивление отопительной системы.
Наряду с явными преимуществами данный смесительный узел обладает одним существенным недостатком. Дело в том, что принцип работы элеватора отопления не позволяет регулировать температуру смеси на выходе. Ведь что для этого нужно? Изменять при необходимости количество перегретого теплоносителя из сети и подсасываемой воды из обратки. Например, чтобы температуру снизить, надо уменьшить расход на подаче и увеличить поступление теплоносителя через перемычку. Этого можно добиться только уменьшением диаметра сопла, что невозможно.
Проблему качественного регулирования помогают решить элеваторы с электроприводом. В них посредством механического привода, вращаемого электродвигателем, увеличивается или уменьшается диаметр сопла. Это реализовано за счет дроссельной иглы конусной формы, входящей в сопло изнутри на определенное расстояние. Ниже изображена схема элеватора отопления с возможностью управления температурой смеси:
1 – сопло; 2 – дроссельная игла; 3 – корпус исполнительного механизма с направляющими; 4 – вал с зубчатым приводом.
Появившийся относительно недавно регулируемый элеватор отопления позволяет производить модернизацию тепловых пунктов без кардинальной замены оборудования. Учитывая, сколько еще подобных узлов функционирует на просторах СНГ, подобные агрегаты приобретают все большую актуальность.
Элеваторный узел системы отопления: принцип работы, схема
Обеспечение жилых домов и общественных зданий теплом – одна из главнейших задач коммунальных служб городов и поселков. Современные системы теплоснабжения – эта сложные комплексы, включавшие поставщиков тепла (ТЭЦ или котельные), разветвлённую сеть магистральных трубопроводов, специальные распределительные теплопункты, от которых идут ответвления к конечным потребителям.
Однако, подающийся по трубам к зданиям теплоноситель не напрямую попадает во внутридомовую сеть и конечные точки теплообмена – радиаторы отопления. В любом доме имеется собственный тепловой узел, в котором производится соответствующая регулировка уровня давления и температуры воды. Здесь установлены специальные устройства, выполняющие эту задачу. В последнее время все чаще устанавливается современное электронное оборудование, которое позволяет в автоматическом режиме контролировать необходимые параметры и вносить соответствующие коррективы. Стоимость подобных комплексов – весьма высока, они напрямую зависят от стабильности электропитания, поэтому нередко эксплуатирующими жилой фонд организациями, отдается предпочтение старой проверенной схеме локальной регулировки температуры теплоносителя на входе в домовую сеть. И основным элементом подобной схемы является элеваторный узел системы отопления.
Элеваторный узел системы отопления
Цель настоящей статьи – дать понятие об устройстве и принципе работы самого элеватора, о его месте в системе и выполняемых им функциях. Кроме того, заинтересованные читатели получат урок по самостоятельному расчету этого узла.
Общие краткие сведения о системах теплоснабжения
Чтобы правильно понять важность элеваторного узла, наверное, необходимо для начала кратко рассмотреть, как же работают центральные системы теплоснабжения.
ТЭЦ с системой тепловых магистралей
Источником тепловой энергии являются ТЭЦ или котельные, в которых осуществляется разогрев теплоносителя до нужной температуры за счёт использования того или иного вида топлива (уголь, нефтепродукты, природный газ и т.п.) Оттуда теплоноситель прокачивается по трубам к точкам потребления.
ТЭЦ или крупная котельная рассчитана на обеспечение теплом определенного района, порой – с очень немалой территорией. Системы трубопроводов получаются весьма протяжёнными и разветвленными. Как минимизировать потери тепла и равномерно распределить его по потребителям, так, чтобы, например, наиболее удаленные от ТЭЦ здания не испытывали недостаточности в нем? Это достигается тщательной термоизоляцией тепловых магистралей и поддержанием в них определенного теплового режима.
На практике используется несколько теоретически рассчитанных и практически проверенных температурных режимов функционирования котельных, которые обеспечивают и передачу тепла на значительные расстояния без существенных потерь, и максимальную эффективность, и экономичность работы котельного оборудования. Так, к примеру, применяются режимы 150/70, 130/70, 95/70 (температура воды в магистрали подачи / температура в «обратке»). Выбор конкретного режима зависит от климатического пояса региона и от конкретного уровня текущей зимней температуры воздуха.
Упрощенная схема подачи тепла от ТЭЦ (котельной) к потребителям
1 – Котельная или ТЭЦ.
2 – Потребители тепловой энергии.
3 – Магистраль подачи разогретого теплоносителя.
4 – Магистраль «обратки».
5 и 6 – Ответвления от магистралей к зданиям – потребителям.
7 – Внутридомовые тепловые распределительные узлы.
От магистралей подачи и «обратки» идут ответвления в каждое здание, подключенное к данной сети. Но вот здесь сразу возникают вопросы.
- Во-первых, разным объектам требуется различное количество тепла – не сравнить, к примеру, огромную жилую высотку и небольшое малоэтажное здание.
- Во-вторых, температура воды в магистрали не соответствует допустимым нормам для подачи непосредственно на теплообменные приборы. Как видно из приведенных режимов, температура очень часто даже превышает точку кипения, и вода поддерживается в жидком агрегатном состоянии только лишь за счет высокого давления и герметичности системы.
Использование столь критичных температур в отапливаемых помещениях – недопустимо. И дело не только в избыточности поступления тепловой энергии – это чрезвычайно опасно. Любое прикосновение к разогретым до такого уровня батареям вызовет сильный ожог тканей, а в случае даже небольшой разгерметизации теплоноситель мгновенно превращается в горячий пар, что может повлечь очень серьезные последствия.
Правильный выбор радиаторов отопления – чрезвычайно важен!
Не все радиаторы отопления одинаковы. Дело не только и не столько в материале изготовления и внешнем виде. Они могут значительно различаться своими эксплуатационными характеристиками, адаптацией к той или иной системе отопления.
Как правильно подойти к выбору радиаторов отопления – в специальной статье нашего портала.
Таким образом, на локальном тепловом узле дома необходимо снизить температуру и давление до расчетных эксплуатационных уровней, обеспечив при этом требуемый отбор тепла, достаточный для нужд отопления конкретного здания. Эту роль выполняет специальное теплотехническое оборудование. Как уже говорилось, это могут быть современные автоматизированные комплексы, но очень часто отдается предпочтение проверенной схеме элеваторного узла.
Так может выглядеть простейший элеваторный узел в жилом доме
Если заглянуть на тепловой распределительный пункт здания (чаще всего они располагаются в подвале, в точке входа магистральных тепловых сетей), то можно увидеть узел, в котором явно видна перемычка между трубами подачи и «обратки». Именно здесь и стоит сам элеватор, об устройстве и принципе работы будет рассказано ниже.
Как устроен и работает элеватор отопления
Внешне сам элеватор топления представляет собой чугунную или стальную конструкцию, снабженную тремя фланцами для врезки в систему.
Внешний вид элеватора
Посмотрим на его строение внутри.
Схема устройства и принципа действия струйного элеватора
Перегретая вода из тепловой магистрали попадает во входной патрубок элеватора (поз. 1). Перемещаясь под давлением вперед, она проходит через узкое сопло (поз. 2). Резкое повышение скорости потока на выходе из сопла приводит к эффекту инжекции — в приемной камере (поз. 3) создается зона разряжения. В эту область пониженного давления по законам термодинамики и гидравлики буквально «засасывается» вода из патрубка (поз. 4), подключенного к трубе «обратки». В результате в смесительной горловине элеватора (поз. 5) происходит перемешивание горячего и охлажденного потоков, вода получает необходимую для внутренней сети температуру, снижается давление до безопасного для теплообменных приборов уровня, а затем теплоноситель через диффузор (поз. 6) попадает в систему внутренней разводки.
Помимо понижения температуры, инжектор выполняет роль своеобразного насоса – он создает требуемый напор воды, который необходим для обеспечения ее циркуляции во внутридомовой разводке, с преодолением гидравлического сопротивления системы.
Как видно, система чрезвычайно проста, но очень эффективна, что и обуславливает ее широкое применение даже в условиях конкуренции с современным высокотехнологичным оборудованием.
Безусловно, элеватор нуждается в определенной обвязке. Примерная схема элеваторного узла приведена на схеме:
Базовая схема обвязки элеваторного узла
Разогретая вода из тепловой магистрали поступает по трубе подачи (поз. 1), и возвращается в нее по трубе обратки (поз. 2). От магистральных труб внутридомовая система может отключаться с помощью задвижек (поз. 3). Вся сборка отдельных деталей и устройств осуществляется с применением фланцевых соединений (поз. 4).
Регулировочное оборудование весьма чувствительно к чистоте теплоносителя, поэтому на входе и выходе из системы монтируются фильтры грязевики (поз. 5), прямого или «косого» типа. В них оседают твердые нерастворимые включения и грязь, попавшая в полость труб. Периодически проводится очистка грязевиков от собранных осадков.
Фильтры-«грязевики», прямого (снизу) и «косого» типа
На определенных участках узла установлены контрольно-измерительные приборы. Это манометры (поз. 6), позволяющие контролировать уровень давления жидкости в трубах. Если на входе давление может достигать 12 атмосфер, то уже на выходе из элеваторного узла оно значительно ниже, и зависит от этажности здания и количества точек теплообмена в нем.
Обязательно стоят термодатчики –термометры (поз. 7), контролирующие уровень температуры теплоносителя: на входе их централи – tц, входе во внутридомовую систему – tс, на «обратках» системы и централи – tос и tоц.
Далее, установлен сам элеватор (поз. 8). Правила его монтажа требуют обязательного наличия прямого участка трубопровода не менее 250 мм. Одним, входным патрубком он через фланец соединен к подающей трубе из централи, противоположным – к трубе внутридомовой разводки (поз. 11). Нижний патрубок с фланцем подключен через перемычку (поз. 9) к трубе «обратки» (поз. 12).
Для проведения профилактических или аварийно-ремонтных работ предусматриваются задвижки (поз. 10), полностью отключающие элеваторный узел от внутридомовой сети. На схеме не показаны, но на практике обязательно присутствуют специальные элементы для дренирования – слива воды из внутридомовой системы при возникновении такой необходимости.
Безусловно, схема дана в очень упрощенном виде, но она в полной мере отражает базовое устройство элеваторного узла. Широкими стрелками показаны направления потоков теплоносителя с разными уровнями температур.
Бесспорными преимуществами использования элеваторного узла для регулировки температуры и давления теплоносителя являются:
- Простота конструкции при безотказности в эксплуатации.
- Невысокая стоимость комплектующих и их монтажа.
- Полная энергонезависимость подобного оборудования.
- Использование элеваторных узлов и приборов учета тепла позволяют достичь экономии в расходе потребленного теплоносителя до 30%.
Есть, конечно, и весьма значимые недостатки:
- Каждой системе требуется индивидуальный расчет для подбора требуемого элеватора.
- Необходимость обязательного перепада давления на входе и выходе.
- Невозможность точных плавных регулировок при текущем изменении параметров системы.
Последний недостаток – достаточно условен, так как на практике часто применяются элеваторы, в которых предусмотрена возможность изменения его рабочих характеристик.
Кинематическая схема регулируемого сопла элеватора
Для этого в приемной камере с соплом (поз. 1) установлена специальная игла – конусовидный стержень (поз. 2), который уменьшает сечение сопла. Этот стержень в блоке кинематики (поз. 3) через реечную зубчатую передачу (поз. 4 — 5) связан с регулировочным валом (поз. 6). Вращение вала вызывает перемещение конуса в полости сопла, увеличивая или уменьшая просвет для прохода жидкости. Соответственно, меняются и рабочие параметры всего элеваторного узла.
В зависимости от уровня автоматизации системы, могут применяться различные типы регулируемых элеваторов.
Элеватор с ручной регулировкой сопла
Так, передача вращения может осуществляться вручную – ответственный специалист отслеживает показания контрольно-измерительных приборов и вносит коррективы в работу системы, ориентируясь на нанесенную около маховика (рукоятки) шкалу.
Регулировка может проводиться в автоматическом режиме, с использованием сервопривода
Другой вариант – когда элеваторный узел завязан на электронную систему контроля и управления. Показания снимаются в автоматическом режиме, блок управления вырабатывают сигналы для передачи их на сервоприводы, через которых вращение передается на кинематический механизм регулируемого элеватора.
Что нужно знать о теплоносителях?
В системах отопления, особенно — в автономных, в качестве теплоносителя может использоваться не только вода.
Какими качествами должен обладать теплоноситель для системы отопления, и как правильно его выбрать — в специальной публикации портала.
Расчет и подбор элеватора системы отопления
Как уже говорилось, для каждого здания требуется определенное количеств тепловой энергии. Это означает что необходим определенный расчёт элеватора, исходя из заданных условий эксплуатации системы.
К исходным данным можно отнести:
- Значения температуры:
— на входе их тепловой централи;
— в «обратке» тепловой централи;
— рабочее значение для внутридомовой системы отопления;
— в обратной трубе системы.
- Общее количество тепла, потребное для отопления конкретного дома.
- Параметры, характеризующие особенности внутридомовой разводки отопления.
Порядок расчета элеватора установлен специальным документом – «Сводом правил по проектированию Минстроя РФ», СП 41-101-95, касающимся именно проектирования тепловых пунктов. В этом нормативном руководстве приведены формулы расчета, но они – достаточно «тяжеловесные», и приводить их в статье – нет особой необходимости.
Те читатели, которых мало интересуют вопросы расчета, могут смело пропустить этот раздел статьи. А тем, кто желает самостоятельно рассчитать элеваторный узел, можно порекомендовать потратить 10 ÷ 15 минут времени, чтобы создать собственный калькулятор, основанный на формулах СП, позволяющий проводить точные подсчеты буквально за считанные секунды.
Создание калькулятора для расчета
Для работы потребуется обычное приложение Excel, которое есть, наверное, у каждого пользователя – оно входит в базовый пакет программ MicrosoftOffice. Составление калькулятора не представит особого труда даже для тех пользователей, которые никогда не сталкивались с вопросами элементарного программирования.
Рассмотрим пошагово:
(если часть текста в таблице выходит за рамки, то внизу есть «движок» для горизонтальной прокрутки)
Иллюстрация | Краткое описание выполняемой операции |
Откройте новый файл (книгу) в приложении Excel пакета Microsoft Office. В ячейке А1 наберите текст «Калькулятор для расчета элеватора системы отопления». Ниже, в ячейке А2 набираем «Исходные данные». Надписи можно «поднять», изменяя жирность, размер или цвет шрифта. | |
Ниже расположатся строки с ячейками для ввода исходных данных, на основании которых и будет проводиться расчет элеватора. Заполняем текстом ячейки с А3 по А7: А3 – «Температура теплоносителя, градусы С:» А4 – «в подающей трубе тепловой централи» А5 – «в обратке тепловой централи» А6 – «необходимая для внутридомовой системы отопления» А7 – «в обратке системы отопления» | |
Для наглядности можно пропустить строку, а ниже, в ячейку А9 вносим текст «Необходимое количество тепла для системы отопления, кВт» | |
Пропускаем еще строку, и в ячейку А11 впечатываем «Коэффициент сопротивления системы отопления дома, м». Чтобы текст из столбца А не находил на столбец В, куда будут в дальнейшем вноситься данные, столбец А можно раздвинуть на необходимую ширину (показано стрелкой). | |
Область ввода данных, от А2-В2 до А11-В11 можно выделить и сделать заливку цветом. Так она будет отличаться от другой области, где будут выдаваться результаты вычислений. | |
Пропускаем еще одну строку и вводим в ячейку А13 «Результаты расчета:» Можно выделить текст другим цветом. | |
Далее, начинается самый ответственный этап. Помимо ввода текста в ячейки столбца А, в рядом стоящие ячейки столбца В вписываются формулы, в соответствии с которыми и будут проводиться расчеты. Формулы следует переносить в точности, как это будет указано, безо всяких лишних пробелов. Важно: формула вводится в русской раскладке клавиатуры, за исключением имен ячеек – они вводятся исключительно в латинской раскладке. Для того, чтобы не ошибиться с этим, в приведенных примерах формул имена ячеек будут выделены жирным шрифтом. Итак, в ячейке А14 набираем текст «Температурный перепад тепловой централи, градусов С». в ячейку В14 вносим следующее выражение =(B4—B5) И осуществлять ввод, и контролировать его правильность удобнее в строке формул (зеленая стрелка). Пусть вас не смущает то, что в ячейке В14 сразу появилось какое-то значение (в данном случае «0», синяя стрелка), просто программа сразу отрабатывает формулу, опираясь пока на пустые ячейки ввода. | |
Заполняем следующую строку. В ячейке А15 – текст «Температурный перепад системы отопления, градусов С», а в ячейке В15 – формула =(B6—B7) | |
Следующая строка. В ячейке А16 – текст: «Необходимая производительность системы отопления, куб.м/час». Ячейка В16 должна содержать следующую формулу: =(3600*B9)/(4,19*970*B14) Появится сообщение об ошибке, «деление на ноль» — не обращаем внимания, это просто оттого, что не внесены исходные данные. | |
Идем ниже. В ячейке А17 – текст: «Коэффициент смешения элеватора». Рядом, в ячейке В17 – формула: =(B4—B6)/(B6—B7) | |
Далее, ячейка А18 – «Минимальный напор теплоносителя перед элеватором, м». Формула в ячейке В18: =1,4*B11*(СТЕПЕНЬ((1+B17);2)) Не сбейтесь с количеством скобок – это важно | |
Следующая строка. В ячейке А19 текст: «Диаметр горловины элеватора, мм». Формула в ячейке В18 следующая: =8,5*СТЕПЕНЬ((СТЕПЕНЬ(B16;2)*СТЕПЕНЬ(1+B17;2))/B11;0,25) | |
И последняя строка расчётов. В ячейке А20 вводится текст «Диаметр сопла элеватора, мм». В ячейке В20 – формула: =9,6*СТЕПЕНЬ(СТЕПЕНЬ(B16;2)/B18;0,25) | |
По сути, калькулятор готов. Можно только его несколько «модернизировать, чтобы он был удобнее в работе, и не было риска случайно удалить формулу. Для начала, выделим область от А13-В13 до А20-В20, и зальем ее другим цветом. Кнопка заливки показана стрелкой. | |
Теперь выделяем общую область с А2-В2 по А20-В20. В выпадающем меню «границы» (показано стрелкой) выбираем пункт «все границы». Наша таблица получает стройное обрамление линиями. | |
Теперь нужно сделать так, чтобы значения вручную можно было ввести только лишь в те ячейки, которые для этого предназначены (чтобы не стереть или не нарушить случайно формулы). Выделяем диапазон ячеек от В4 до В11 (красные стрелки). Заходим в меню «формат» (зеленая стрелка) и выбираем пункт «формат ячеек» (синяя стрелка). | |
В открывшемся окне выбираем последнюю вкладку – «защита» и в окошке «защищаемая ячейка» убираем галочку. | |
Теперь вновь идем в меню «формат», и выбираем в нем пункт «защитить лист». | |
Появится небольшое окошко, в котором останется всего лишь нажать кнопку «ОК». Предложение ввести пароль просто игнорируем – в нашем документе такая степень защиты не нужна. Теперь можно быть уверенным, что никакого сбоя не будет – для изменения открыты только лишь ячейки в столбце В в области ввода значений. При попытке внести хоть что-нибудь в любые другие ячейки появится окно с предупреждением о невозможности такой операции. | |
Калькулятор готов. Осталось лишь сохранить файл. – и он всегда будет готов к проведению расчета. |
Провести подсчет в созданном приложении – не составляет никакого труда. Достаточно лишь заполнить известными значениями область ввода – дальше программа все рассчитает в автоматическом режиме.
- Температуру подачи и «обратки» в тепловой централи можно узнать в ближайшем к дому теплопункте (котельной).
- Требуемая температура теплоносителя во внутридомовой системе в большей мере зависит от того, какие теплообменные приборы установлены в квартирах.
- Температура в трубе «обратки» системы чаще всего принимается равной аналогичному показателю в централи.
- Потребность дома в общем притоке тепловой энергии зависит от количества квартир, точек теплообмена (радиаторов), особенностей здания – степени его утепленности, объема помещений, количества общих теплопотерь и т.п. Обычно эти данные рассчитываются заблаговременно еще на стадии проектирования дома или при проведении реконструкции системы его отопления.
- Коэффициент сопротивления внутреннего контура отопления дома рассчитывается по отдельным формулам, с учетом особенностей системы. Однако, не будет большой ошибкой взять и усредненные значения, приведенные в таблице ниже:
Типы многоквартирных жилых домов | Значение коэффициента, м |
Многоквартирные дома старой постройки, с контурами отопления из стальных труб, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. | 1 |
Дома, введенные в эксплуатацию или в которых проведен капитальный ремонт в период до 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах | 3 ÷ 4 |
Дома, введенные в эксплуатацию либо после капитального ремонта в период после 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. | 2 |
То же самое, но с установленными приборами регулировки температуры и расхода теплоносителя на стояках и радиаторах | 4 ÷ 6 |
Проведение расчетов и подбор нужной модели элеватора
Попробуем калькулятор в действии.
Допустим, что температура в подающей трубе тепловой централи – 135, а в обратной – 70 °С. Планируется поддерживать в системе отопления дома температуру в 85 °С, на выходе – 70 °С. Для качественного обогрева всех помещений необходима тепловая мощность в 80 кВт. По таблице определено, что коэффициент сопротивления равен «1».
Подставляем эти значения в соответствующие строки калькулятора, и сразу же получаем необходимые результаты:
После внесения исходных данных сразу получаем готовый результат
В итоге имеем данные для подбора нужной модели элеватора и условия для его корректной работы. Так, получена требуемая производительность системы – количество теплоносителя, прокачиваемого в единицу времени, минимальный напор водяного столба. И самые основные величины – это диаметры сопла элеватора и его горловины (смесительной камеры).
Диаметр сопла принято округлять до сотых долей миллиметра в меньшую сторону ( в данном случае – 4,4 мм). Минимальное значение диаметра должно быть 3 мм – в противном случае сопло просто будет быстро забиваться.
Калькулятор позволяет и «поиграть» значениями, то есть посмотреть, как они будут изменяться при изменении исходных параметров. Например, если температура в теплоцентрали понижена, скажем, до 110 градусов, то это повлечет и другие параметры узла.
Изменение любого исходного параметра сразу дает и изменение результатов вычислений
Как видно, диаметр сопла элеватора уже составляет 7,2 мм.
Это дает возможность выбора устройства с наиболее приемлемыми параметрами, с определенным диапазоном регулировок, или же комплекта сменных сопел для конкретной модели.
Имея рассчитанные данные, уже можно обратиться к таблицам предприятий-изготовителей подобного оборудования для выбора требуемого варианта исполнения.
Обычно в этих таблицах, помимо рассчитанных величин, приводятся и другие параметры изделия – его габариты, размеры фланцев, масса и пр.
Для примера – водоструйные стальные элеваторы серии 40с10бк:
Основные линейные параметры струйного элеватора
Фланцы: 1 – на входе, 1—1 – на врезке трубы из «обратки», 1—2 – на выходе.
2 – входной патрубок.
3 – съемное сопло.
4 – приемная камера.
5 – смесительная горловина.
7 – диффузор.
Основные параметры сведены в таблицу – для удобства выбора:
Номер элеватора | Размеры, мм | Масса, кг | Примерный расход воды из сети, т/ч | |||||||
dc | dг | D | D1 | D2 | l | L1 | L | |||
1 | 3 | 15 | 110 | 125 | 125 | 90 | 110 | 425 | 9,1 | 0,5-1 |
2 | 4 | 20 | 110 | 125 | 125 | 90 | 110 | 425 | 9,5 | 1-2 |
3 | 5 | 25 | 125 | 160 | 160 | 135 | 155 | 626 | 16,0 | 1-3 |
4 | 5 | 30 | 125 | 160 | 160 | 135 | 155 | 626 | 15,0 | 3-5 |
5 | 5 | 35 | 125 | 160 | 160 | 135 | 155 | 626 | 14,5 | 5-10 |
6 | 10 | 47 | 160 | 180 | 180 | 180 | 175 | 720 | 25 | 10-15 |
7 | 10 | 59 | 160 | 180 | 180 | 180 | 175 | 720 | 34 | 15-25 |
При этом производитель допускает самостоятельную замену сопла с нужным диаметром в определенном диапазоне:
Модель элеватора, № | Возможный диапазон смены сопла, Ø мм |
№1 | min 3 мм, max 6 мм |
№2 | min 4 мм, max 9 мм |
№3 | min 6 мм, max 10 мм |
№4 | min 7 мм, max 12 мм |
№5 | min 9 мм, max 14 мм |
№6 | min 10 мм, max 18 мм |
№7 | min 21 мм, max 25 мм |
Подобрать требуемую модель, имея на руках результаты расчета – не представит особого труда.
При монтаже элеватора или при проведении профилактических работ следует обязательно учитывать, что от правильности установки и целостности деталей напрямую зависит эффективность работы узла.
Так, конус сопла (стакан) должен быть установлен строго соосно с камерой смешения (горловиной). Сам стакан в посадочное гнездо элеватора должен входить свободно, чтобы была возможность его извлечения для ревизии или замены.
При проведении ревизий следует обращать особое внимание на состояние поверхностей отделов элеватора. Даже наличие фильтров не исключает абразивного воздействия жидкости, плюс к этому никуда не деться от эрозийных процессов и коррозии. Сам рабочий конус должен иметь отполированную внутреннюю поверхность, ровные, неизношенные края сопла. При необходимости производится его замена на новую деталь.
Сопла элеватора нуждаются в периодической ревизии и замене
Несоблюдение таких требований влечет снижение КПД узла и падение давления, необходимого для циркуляции теплоносителя во внутридомовой разводке отопления. Кроме того, износ сопла, его загрязнение или слишком большой диаметр (существенно выше расчётного), приведут к появлению сильных гидравлических шумов, которые по трубам отопления будут передаваться в жилые помещения здания.
Элеваторный узел с автоматической регулировкой
Конечно, система отопления дома с простейшим элеваторным узлом – далеко не образец совершенства. Она весьма тяжело поддается регулировке, которая требует разборки узла и замены инжекторного сопла. Поэтому оптимальным вариантом видится, все же, модернизация с установкой регулируемых элеваторов, позволяющих изменять параметры смешения теплоносителя в определенном диапазоне.
А как регулировать температуру в квартире?
Температура теплоносителя во внутридомовой сети может быть избыточна для отдельно взятой квартиры, например, если в ней используются «теплые полы». Значит, потребуется установка собственного оборудования, которое поможет поддерживать степень нагрева на нужном уровне.
Варианты, как подключить теплые полы к отоплению – в специальной статье нашего портала.
И напоследок – видео с компьютерной визуализацией устройства и принципа действия элеватора отопления:
Видео: устройство и работа элеватора отопления
Расчет элеватора отопления
Следует отметить, что расчет водоструйного насоса, коим является элеватор, считается довольно громоздким, мы постараемся подать его в доступной форме. Итак, для подбора агрегата нам важны две главных характеристики элеваторов – внутренний размер смесительной камеры и проходной диаметр сопла. Размер камеры определяется по формуле:
- dr – искомый диаметр, см;
- Gпр – приведенное количество смешанной воды, т/ч.
В свою очередь, приведенный расход вычисляется таким образом:
В этой формуле:
- τсм – температура смеси, идущей на отопление, °С;
- τ20 – температура остывшего теплоносителя в обратке, °С;
- h2 – сопротивление отопительной системы, м. вод. ст.;
- Q – потребный расход тепла, ккал/ч.
Чтобы подобрать элеваторный узел системы отопления по размеру сопла, надо его рассчитать по формуле:
- dr – диаметр смесительной камеры, см;
- Gпр – приведенный расход смешанной воды, т/ч;
- u – безразмерный коэффициент инжекции (смешивания).
Первые 2 параметра уже известны, остается только отыскать значение коэффициента смешивания:
В этой формуле:
- τ1 – температура перегретого теплоносителя на входе в элеватор;
- τсм, τ20 – то же, что и в предыдущих формулах.
Опираясь на полученные результаты, осуществляется подбор агрегата по двум основным характеристикам. Стандартные размеры элеваторов обозначены номерами от 1 до 7, принимать надо тот, что ближе всего к расчетным параметрам.
Расчет и подбор элеватора по номеру
Сразу уточним порядок действий: первым делом рассчитывается диаметр смешивающей камеры и выбирается подходящий номер элеватора, затем определяется размер рабочего сопла. Диаметр инжекционной камеры (в сантиметрах) вычисляется по формуле:
Участвующий в формуле показатель Gпр – это реальный расход теплоносителя в системе многоквартирного дома с учетом ее гидравлического сопротивления. Величина рассчитывается так:
- Q – количество теплоты, расходуемое на обогрев здания, ккал/ч;
- Тсм – температура смеси на выходе из элеваторного тройника;
- Т2о – температура воды в обратной линии;
- h – сопротивление всей разводки отопления вместе с радиаторами, выраженное в метрах водного столба.
Справка. Чтобы вставить в формулу непонятные килокалории, нужно знакомые ватты умножить на коэффициент 0.86. Метры водного столба преобразуются в более распространенные единицы: 10.2 м вод. ст. = 1 Бар.
Пример подбора номера элеватора. Мы выяснили, что реальный расход Gпр составит 10 тонн смешанной воды за 1 час. Тогда диаметр смесительной камеры равен 0.874 √10 = 2.76 см. Логично взять смеситель №4 с камерой 30 мм.
Теперь выясняем диаметр узкой части сопла (в миллиметрах) по следующей формуле:
- Dr – определенный ранее размер инжекторной камеры, см;
- u – коэффициент смешивания;
- Gпр – наш расход готового теплоносителя на подаче в систему.
Хотя внешне формула кажется громоздкой, но в действительности расчеты не слишком сложные. Остается неизвестным один параметр – коэффициент инжекции, вычисляемый так:
Все обозначения из данной формулы мы расшифровали, кроме параметра Т1 – температуры горячей воды на входе в элеватор. Если предположить, что ее величина составляет 150 градусов, а температура подачи и обратки 90 и 70 °С соответственно, искомый размер Dc выйдет 8.5 мм (при расходе 10 т/ч воды).
Когда известна величина напора Нр на входе в элеватор со стороны централи, можно воспользоваться альтернативной формулой определения диаметра:
Замечание. Результат вычисления по последней формуле выражается в сантиметрах.