Как рассчитать тепловую мощность радиаторов для системы отопления

Опубликовано 09 Мар 2014 Рубрика: Теплотехника | 22 комментария

«У вас теплые батареи?» или «У вас горячие радиаторы отопления?» — такие вопросы мы задаем соседям, если у нас прохладно в квартире, в кабинете, в производственном помещении. Все разнообразные приборы отопления в народе, обычно, называют батареями или радиаторами отопления.

Под эти термины попадают панельные и секционные радиаторы, ребристые трубы, регистры из гладких труб, разнообразные конвекторы и даже иногда относительно экзотические потолочные излучатели.

В статье, которую вы читаете, будет представлена небольшая программа в MS Excel, позволяющая выполнить тепловой расчет радиаторов отопления и конвекторов.

Радиатор отопления – это прибор, который нагревает воздух и предметы в помещении посредством радиационного излучения и конвективного теплообмена, передавая при этом тепловую энергию от горячего теплоносителя (чаще всего от воды) через свои стенки.

Конвектор передает тепловую энергию в окружающее его пространство исключительно (на 95%) путем конвективного теплообмена – нагрева горячими стенками воздушных струй.

Доля тепла, передаваемая конвекцией (оставшаяся часть, соответственно, — инфракрасным излучением) для некоторых типов приборов отопления приведена ниже:

Чугунные радиаторы (батареи) – 25…35%

Алюминиевые секционные радиаторы – 50…60%

Панельные стальные радиаторы – 65…75%

Конвекторы – 90…98%

Какой тип приборов отопления лучше однозначно сказать нельзя. У всех есть недостатки. Однако возросшее качество проектирования и изготовления конвекторов позволяет этому типу приборов в последнее время постоянно увеличивать свою долю рынка.

За последние лет пять мне довелось участвовать в выборе и проектировании систем отопления для большого торгового комплекса (4 этажа, более 30 тысяч квадратных метров) и для производственного цеха (500 квадратных метров). И там и там, в качестве приборов отопления по критерию «цена / качество / эффективность» были применены конвекторы, которые существенно «переиграли» конкурентные варианты (в том числе и вариант воздушного отопления). Практика последующей эксплуатации подтвердила правильность выбранного решения – конвекторы прекрасно отапливают объекты!

Как и большинство расчетов в теплотехнике предлагаемый расчет радиаторов отопления будет приблизительным. «Приблизительность» заключается в том, что на фактическую теплоотдачу приборов влияют десяток факторов, часть из которых в «точных» расчетах учитываются коэффициентами, определенными в практических опытах, а часть факторов из-за малой значимости и вовсе игнорируются.

Предложенный ниже расчет радиаторов отопления учитывает 90…95% факторов при выполнении ряда условий:

1. Атмосферное давление в месте эксплуатации приборов должно быть около 760 миллиметров ртутного столба. Для высокогорных местностей необходимо вводить дополнительную поправку при «точных» расчетах.

2. Подача воды в прибор не должна быть «снизу – вверх»! Подача может быть любой, предпочтительнее — «сверху – вниз». В противном случае около 15…20% тепла не дополучите.

3. Монтаж радиатора должен обеспечивать свободное движение воздуха вдоль его поверхностей в вертикальном направлении. Расстояние от пола до низа прибора и от верха прибора до подоконника или верха установочной ниши стены желательно должны быть не менее 100 миллиметров.

Предлагаемый далее расчет в Excel, можно выполнить и в программе OOo Calc из пакета Open Office.

О цветах ячеек листа Excel, которые применены в статьях этого блога, следует прочесть на странице«О блоге».

Расчет радиаторов отопления и конвекторов в Excel.

Исходные данные:

1.

Тип выбранного отопительного прибора записываем

в объединенные ячейки C3D3E3: Радиатор МС-140-108

2.

Количество последовательно включенных приборов (секций)
N
в шт. вводим

в ячейку D4: 10

Следующие 5 параметров берем из
технических характеристик завода изготовителя приборов.
3.

Номинальный тепловой поток прибора (секции)

в Вт заносим

в ячейку D5: 185

4.

Номинальный температурный напор прибора (секции)
dtн
в °C заносим

в ячейку D6: 70

5.

Номинальный расход воды через прибор (секцию)

в кг/час вписываем

в ячейку D7: 360

6.

Показатель нелинейности теплоотдачи от температуры
n
записываем

в ячейку D8: 0,30

7.

Показатель нелинейности теплоотдачи от расхода
p
записываем

в ячейку D9: 0,02

Следующие 3 параметра задаем исходя из предполагаемой реальности последующей эксплуатации. Они зависят от источника теплоснабжения и типа помещения.

8.

Температуру воды на «подаче»
tп
в °C заносим

в ячейку D10: 85

9.

Температуру воды на «обратке»
tо
в °C заносим

в ячейку D11: 60

10.

Температуру воздуха в помещении
tв
в °C вписываем

в ячейку D12: 18

Результаты расчетов:

11.

Номинальный тепловой поток
N
приборов (секций)
ΣQн
в КВт вычисляем

в ячейке D14: =D4*D5/1000 =1,850

ΣQн=N*Qн/1000

12.

Температурный напор
dt
в °C определяем

в ячейке D15: =(D10+D11)/2-D12 =54,5

dt=(tп+tо)/2-
tв
13.

Расчетный оптимальный расход воды
G
в кг/час рассчитываем

в ячейке D16: =((0,86*D14*1000*((D15/D6)^(D8+1))*(1/D7)^D9)/(D10-D11))^(1/(1-D9)) =44

G=((0,86*ΣQн*1000*((dt/dtн)(n+1))*(1/Gн)p)/(tп
tо)(1/(1-p))
14.

Расчетную теплоотдачу
N приборов (секций) отопления Q
в КВт вычисляем

в ячейке D17: =D14*((D15/D6)^(D8+1))*(D16/D7)^D9 =1,281

Q=ΣQн*((dt/dtн)(n+1))*(G/Gн)p

и делаем проверку

в ячейке D18: =D16/0,86*(D10-D11)/1000 =1,281

Q=G/0,86*(tп
tо)/1000
15.

Долю реальной теплоотдачи
N
приборов от номинального теплового потока

в % определяем

в ячейке D19: =D17/D14*100 =69

∆=Q/ΣQн*100

На этом расчет в Excel радиатора отопления МС 140-108, стоящего из 10 секций завершен.

Выполним аналогичный расчет в Excel конвектора КСК 20-2,083ПС.

Расчет тепловой мощности радиаторов отопления

Мощность радиатора

– это тепловая энергия радиатора, обычно измеряется в Ваттах (Вт)

Существует прямая связь между теплопотерями помещения и мощностью радиатора. То есть если Ваша комната имеет теплопотери 1500 Вт, то и радиатор соответственно нужно подбирать той же мощности в 1500 Вт. Но не все так просто, потому что температура радиатора может быть в диапазоне от 45-95 °С и соответственно мощность радиатора будет разной при разных температурах.

Но многие к сожалению не поймут как узнать теплопотери конматы… Существуют простые расчеты для определения теплопотерь помещения. О них будет позже написано.

А с какой температурой будет греть радиатор?

Если у Вас частный дом с пластиковыми трубами, то температура радиаторов будет колебаться от 45-80 градусов. Средняя температура 60 градусов. Максимальная температура 80 градусов.

Если у Вас квартира с центральным отоплением, то от 45-95 градусов. Максимальная температура 95 градусов. Сейчас температура центрального отопления погодозависимая. Это означает, что температура теплоносителя центрального отопления зависит от наружной температуры. Если на улице холодает, то и температура теплоносителя выше и наоборот. Мощность радиаторов по СНиП рассчитывается на ∆70 градусов. Но это не означает, что нужно так подбирать. Проектировщики закладывают мощность такую, чтобы меньше обогреть вашу квартиру и сэкономить деньги на тепловой энергии, а денег с квартплаты снять как обычно. На сегодняшний день менять радиатор на более мощный не запрещается. Но если Ваш радиатор будет сильно отбирать тепло и будут жалобы по системе, то к Вам применят меры.

Предположим, что Вы определились с температурой теплоносителя и мощностью радиатора

Дано:

Средняя температура радиатора 60 градусов

Мощность радиатора 1500 Вт

Температура помещения 20 градусов.

Решение

Когда Вы будите искать, спрашивать радиатор на мощность 1500 Вт, то Вам будут предлагать радиатор мощностью 1500 Вт с температурным напором ∆70 °С. Или ∆50, ∆30…

Что такое температурный напор радиатора?

Температурный напор

– это разница температур между температурой радиатора(теплоносителя) и температурой помещения(воздуха)

Температура радиатора это условно средняя температура теплоносителя. То есть

Предположим, что имеется серия радиаторов определенных мощностей с температурным напором ∆70 °С.

Модель 1, 1500 Вт

Модель 2, 2000 Вт

Модель 3, 2500 Вт

Модель 4, 3000 Вт

Модель 5, 3500 Вт

Необходимо подобрать модель радиатора при средней температуре теплоносителя 60 градусов.

При этом температурный напор будет равен 60-20=40 градусов.

Существует формула перерасчета мощности радиаторов:

Uф – фактический температурный напор

Uн – нормативный температурный напор

Подробнее о формуле: Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704

Решение

Ответ:

Модель 5, 3500 Вт

Нравится
Поделиться
Комментарии
(+) [ Читать / Добавить ]

Серия видеоуроков по частному дому
Часть 1. Где бурить скважину? Часть 2. Обустройство скважины на воду Часть 3. Прокладка трубопровода от скважины до дома Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения Расчет самовсасывающего насоса Расчет диаметров от центрального водоснабжения Насосная станция водоснабжения Как выбрать насос для скважины? Настройка реле давления Реле давления электрическая схема Принцип работы гидроаккумулятора Уклон канализации на 1 метр СНИП Подключение полотенцесушителя Рециркуляция ГВС схема – лучшее решение!
Схемы отопления
Гидравлический расчет двухтрубной системы отопления Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана Гидравлический расчет однотрубной системы отопления Гидравлический расчет лучевой разводки системы отопления Схема с тепловым насосом и твердотопливным котлом – логика работы Трехходовой клапан от valtec + термоголовка с выносным датчиком Почему плохо греет радиатор отопления в многоквартирном доме Как подключить бойлер к котлу? Варианты и схемы подключения Рециркуляция ГВС. Принцип работы и расчет Вы не правильно делаете расчет гидрострелки и коллекторов Ручной гидравлический расчет отопления Расчет теплого водяного пола и смесительных узлов Трехходовой клапан с сервоприводом для ГВС Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п. Температурный режим отопления 90-70, 80-63, 70-55, 60-50
Конструктор водоснабжения и отопления
Уравнение Бернулли Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления Секция радиатора Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления Новые насосы работают по-другому… Расчет инфильтрации Расчет температуры в неотапливаемом помещении Расчет пола по грунту Расчет теплоаккумулятора Расчет теплоаккумулятора для твердотопливного котла Расчет теплоаккумулятора для накопления тепловой энергии Куда подключить расширительный бак в системе отопления? Сопротивление котла Петля Тихельмана диаметр труб Как подобрать диаметр трубы для отопления Теплоотдача трубы Гравитационное отопление из полипропиленовой трубы Почему не любят однотрубное отопление? Как её полюбить? Умный подбор диаметров в системе отопления Балансировка радиаторов отопления – пошаговое руководство Топ 5 проблем в проектировании систем отопления
Регуляторы тепла
Комнатный термостат — принцип работы
Смесительный узел
Что такое смесительный узел? Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС? Пропускная способность Kvs. Что это такое? Кипение воды под давлением – что будет? Что такое гистерезис в температурах и давлениях? Что такое инфильтрация? Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно! Гидравлические смыслы, понятия и расчет цепей систем отопления Коэффициент затекания в однотрубной системе отопления Гидравлический парадокс в системе отопления. Загадка № 4
Видео
Отопление Автоматическое управление температурой Простая подпитка системы отопления Теплотехника. Ограждающие конструкции. Теплый водяной пол Насосно смесительный узел Combimix Почему нужно выбрать напольное отопление? Водяной теплый пол VALTEC. Видеосеминар Труба для теплого пола — что выбрать? Теплый водяной пол – теория, достоинства и недостатки Укладка теплого водяного пола — теория и правила Теплые полы в деревянном доме. Сухой теплый пол. Пирог теплого водяного пола – теория и расчет Новость сантехникам и инженерам Сантехники Вы все еще занимаетесь халтурой? Первые итоги разработки новой программы с реалистичной трехмерной графикой Программа теплового расчета. Второй итог разработки Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции Итоги разработки новой программы по гидравлическому расчету Первично вторичные кольца системы отопления Один насос на радиаторы и теплый пол Расчет теплопотерь дома — ориентация стены?
Нормативные документы
Нормативные требования при проектировании котельных Сокращенные обозначения
Термины и определения
Цоколь, подвал, этаж Котельные
Документальное водоснабжение
Источники водоснабжения Физические свойства природной воды Химический состав природной воды Бактериальное загрязнение воды Требования, предъявляемые к качеству воды
Сборник вопросов
Можно ли разместить газовую котельную в подвале жилого дома? Можно ли пристроить котельную к жилому дому? Можно ли разместить газовую котельную на крыше жилого дома? Как подразделяются котельные по месту их размещения?
Личные опыты гидравлики и теплотехники
Вступление и знакомство. Часть 1 Гидравлическое сопротивление термостатического клапана Гидравлическое сопротивление колбы — фильтра
Видеокурс Программы для расчетов
Technotronic8 — Программа по гидравлическим и тепловым расчетам Auto-Snab 3D — Гидравлический расчет в трехмерном пространстве
Полезные материалы Полезная литература
Гидростатика и гидродинамика
Задачи по гидравлическому расчету
Потеря напора по прямому участку трубы Как потери напора влияют на расход?
Разное
Водоснабжение частного дома своими руками Автономное водоснабжение Схема автономного водоснабжения Схема автоматического водоснабжения Схема водоснабжения частного дома
Политика конфиденциальности Ответы на вопросы Клиент 1 Клиент 1. КПД котла

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

Сергей Булкин

Трубы, имеющие гладкую внутреннюю поверхность, уменьшают потери на трение при движении теплоносителя. Это даёт нам преимущества – берём трубопроводы меньшего диаметра и экономим на материале. Также уменьшаются затраты электроэнергии, необходимые для работы циркуляционного насоса. Можно взять насос меньшей мощности, т.к. за счёт меньшего сопротивления в трубопроводах требуется меньший напор.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Характеристики различного оборудования

Отопительное оборудование выбирается с учетом комплекса различных критериев. Среди них немаловажным является КПД. Например, многие считают, что алюминиевые батареи при идентичной мощности с чугунными обладают более высокой эффективностью. Это обосновывается лучшей теплопроводностью цветного металла. Однако материал в производстве используется с примесями, которые заметно снижают показатели. Рассмотрим детальнее характеристики отдельных образцов.

Биметаллические

На практике теплоотдача биметаллических радиаторов отопления является самой высокой.


Биметаллический секционный радиатор Источник klimatvspb.ru

Показатели, характерные для одной секции, находятся в пределах от 140 до 180 Вт. По исполнению такое оборудование представлено стальными контурами с алюминиевым оребрением. Расчетное давление здесь ограничено 35 Атмосферами, эксплуатационный срок исчисляется минимум 20 годами.

Алюминиевые

Теплоотдача алюминиевых радиаторов может находиться в диапазоне 130-220,9 Вт, что актуально для одной секции. Рабочий материал здесь представлен силумином (сплав алюминия с кремнием), который обеспечивает батареям хорошую энергоэффективность. Но из-за относительно невысокой механической прочности металла батареи могут исправно служить при давлении в пределах 10 Атмосфер. Также имеются ограничения относительно кислотности теплоносителя и содержания щелочи – уровень pH не должен превышать 7,5 единиц.

Способы, как можно увеличить теплоотдачу

Существует несколько способов, позволяющих увеличить теплоотдачу приборов отопления:

  1. Регулярное проведение влажной уборки с целью очистки поверхности батарей. Чем чище они будут, тем выше уровень их теплоотдачи.
  2. Не менее важен момент правильного окрашивания радиатора, особенно это касается чугунных приборов. Дело в том, что многослойно нанесенная краска препятствует эффективной теплоотдаче. Перед тем, как приступить к покраске радиатора отопления, следует удалить старый слой. Не менее эффективно применение специальных эмалей, предназначенных для трубопроводов и отопительных приборов, поскольку они имеют низкое сопротивление теплоотдаче.
  3. Для обеспечения максимальной мощности, необходимо правильно смонтировать эти устройства.
  4. Среди основных ошибок, допускаемых при монтаже, специалисты отмечают: – наклон батареи; – установку прибора слишком близко к напольному покрытию или к стене; – перекрытие доступа к радиаторам предметами обстановки и установка неподходящих отражающих экранов.
  5. Для повышения эффективности отопительных батарей не помешает проведение ревизии их внутренней полости. Нередко в процессе подключения батарей отопления к системе образуются заусеницы, из-за которых при эксплуатации образуются засоры, препятствующие свободному передвижению теплоносителя.
  6. Можно поместить на стену за отопительным прибором теплоотражающий экран, сделанный из фольгированного материала.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]